

WRL 026-161

Manuel technique

POMPE À CHALEUR EAU/EAU RÉVERSIBLE DU CÔTÉ EAU

Puissance frigorifique 6,6 ÷ 44,2 kW

Puissance thermique 7,5 ÷ 48,0 kW

Cher client,

Nous vous remercions de vouloir en savoir plus sur un produit Aermec. Il est le résultat de plusieurs années d'expériences et d'études de conception particulières, il a été construit avec des matériaux de première sélection à l'aide de technologies très avancées.

Le manuel que vous êtes sur le point de lire a pour but de présenter le produit et de vous aider à choisir l'unité qui répond le mieux aux besoins de votre système.

Cependant, nous vous rappelons que pour une sélection plus précise, vous pouvez également utiliser l'aide du programme de sélection Magellano, disponible sur notre site web.

Aermec est toujours attentive aux changements continus du marché et de ses réglementations et se réserve la faculté d'apporter, à tout instant, toute modification retenue nécessaire à l'amélioration du produit, avec modification éventuelle des données techniques relatives.

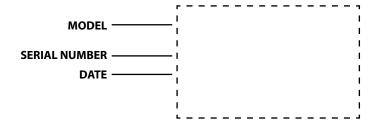
Avec nos remerciements,

Aermec S.p.A.

CERTIFICATIONS

CERTIFICATIONS DE L'ENTREPRISE

CERTIFICATIONS DE SÉCURITÉ



Cette étiquette indique que le produit ne doit pas être jetés avec les autres déchets ménagers dans toute l'UE. Pour éviter toute atteinte à l'environnement ou la santé humaine causés par une mauvaise élimination des déchets d'équipements électriques et électroniques (DEEE), se il vous plaît retourner l'appareil à l'aide de systèmes de collecte appropriés, ou communiquer avec le détaillant où le produit a été acheté. Pour plus d'informations se il vous plaît communiquer avec l'autorité locale appropriée. Déversement illégal du produit par l'utilisateur entraîne l'application de sanctions administratives prévues par la loi.

WRL 026 -161

Nous, Signataires du présent acte, déclarons sous notre responsabilité exclusive que le groupe cité à l'objet défini de la façon suivante:

Nom: WRL

Type: Pompe à chaleur eau/eau réversible du côté eau

Modèles: WRL_1709_HP

auquel cette déclaration se réfère, est conforme à toutes les dispositions relatives des directives suivantes:

Directive basse tension: LVD 2014/35/UE

Directive Erp 2009/125/CE

Directive RoHS relative à la limitation de l'utilisation de certaines substances dangereuses dans les EEE: 2011/65/UE

Directive PED des équipements sous pression: 2014/68/UE (module A) Directive sur la compatibilité électromagnétique EMCD: 2014/30/UE

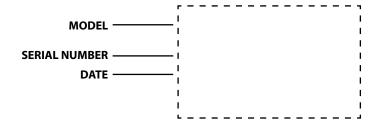
L'objet de la déclaration reportée ci-dessus est conforme aux normes d'harmonisation relatives de l'Union:

CEI EN 60335-2-40 / A13: 2012 CEI EN 60335-2-40:2005 UNI EN 378-2: 2017 CEI EN 60335-2-40 / A2: 2009 UNI EN 12735-1: 2020 CEI EN IEC 61000-6-1: 2019

Produit WRL 026-161 (Pompe à chaleur eau/eau réversible du côté eau): les configurations indiquées ci-dessous (vis-à-vis des options) ne sont pas conformes à CEI EN 60335-2-40/A1: 2007, CEI EN IEC 61000-6-3: 2021, CEI EN IEC 55014-1: 2021, CEI EN IEC 55014-2: 2021.

Signé au nom et pour le compte de : AERMEC S.p.A.

Bevilacqua (VR),


Directeur Commercial Luigi Zucchi

ting : Suchi

23/05 – 5383512_06 5

WRL 026 -161

We, the undersigned, hereby declare under our own responsibility that the assembly in question, defined as follows:

Name: WRL

Type: Water cooled heat pump reversible water side

Models: WRL_1709_HP

to which this declaration refers, complies with all the provisions related to the following directives:

S.I. 2016 No.1101

S.I. 2008 No.1597

S.I. 2016 No.1091

S.I. 2016 No.1105

S.I. 2012 No.3032

S.I. 2010 No.2617

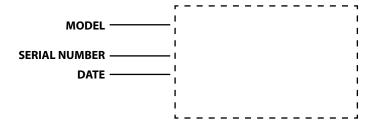
The above-mentioned declaration complies with the harmonised European standards:

EN 60335-2-40: 2003 EN 60335-2-40/A1: 2006 EN 60335-2-40/A13: 2019 EN 60335-2-40/A13: 2012 EN IEC 61000-6-1: 2019 EN IEC 61000-6-3: 2021 EN IEC 55014-1: 2021 EN IEC 55014-2: 2021 EN 378-2: 2016

This declaration of conformity has been released under the exclusive responsibility of the manufacturer.

Signed for and on behalf of: AERMEC S.p.A.

Bevilacqua (VR),


EN 12735-1: 2020

Marketing manager Luigi Zucchi

Ling: Suchi

WRL-E

Nous, Signataires du présent acte, déclarons sous notre responsabilité exclusive que le groupe cité à l'objet défini de la façon suivante:

Nom: WRL

Type: Pompe à chaleur eau/eau réversible du côté eau

Modèles: WRL_1709_HP

auquel cette déclaration se réfère, est conforme à toutes les dispositions relatives des directives suivantes:

Directive Machines: 2006/42/CE

La documentation technique pertinente est constituée conformément à l'annexe VII, partie B; cette documentation ou una partie de celui-ci seront envoyés par la poste ou par voie électronique, à la suite d'une demande dûment motivée des autorités nationales.

La quasi-machine ne doit pas être mise en service avant que la machine finale dans laquelle elle doit être incorporée ait été déclarée conforme aux dispositions pertinentes de la directive 2006/42/CE.

Signé au nom et pour le compte de : AERMEC S.p.A.

Bevilacqua (VR),

Directeur Commercial Luigi Zucchi

Ling: Suchi

23/05 – 5383512_06 7

TABLE DES MATIÈRES

1.	Description du produit	p. 9
	Caractéristiques de la série	p. 9
	Détendeur thermostatique	
	Contrôle ModuControl	p. 9
2.	Configurateur	p. 10
3.	Description des composants de l'unité	p. 11
	Structure	p. 11
	Circuit frigorifique	p. 11
	Circuit hydraulique standard	p. 11
	Composants du circuit hydraulique sur les versions avec kit	n 11
	hydronique Composants contrôle et sécurité	
	Tableau électrique de contrôle et puissance	
4.	Schémas du circuit frigorifique de principe	
••	WRL standard 026/081	
	WRL standard 101/161	'
	WRL-E 026/081	
	WRL-E 101/161	
5.	WRL-E Lignes frigorifiques	p. 15
	Disposition lignes frigorifiques	p. 15
6.	Schémas hydrauliques de principe	p. 16
	Circuit hydraulique WRL / STANDARD	p. 16
	Circuit hydraulique WRL / POMPES	p. 17
	Circuit hydraulique WRL-A / BALLON ET POMPES	
	Caractárictiques de l'equ	
	Caractéristiques de l'eau	p. 19
7.	Choix et le lieu de l'installation	
7. 8.		p. 20
	Choix et le lieu de l'installation	p. 20 p. 21 p. 21
	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21
	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21
8.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 22
8.9.10.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 21 p. 22 p. 23
8.9.10.11.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 22 p. 23 p. 23
8.9.10.11.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 22 p. 23 p. 23 p. 24
8.9.10.11.12.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 22 p. 23 p. 23 p. 23
8.9.10.11.12.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 23 p. 23 p. 23 p. 24 p. 25
8.9.10.11.12.13.	Choix et le lieu de l'installation	p. 20 p. 21 p. 21 p. 21 p. 22 p. 23 p. 23 p. 24 p. 25 p. 25 p. 25
8.9.10.11.12.13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13. 14. 15.	Choix et le lieu de l'installation	p. 20
8. 9. 10. 11. 12. 13. 14. 15.	Choix et le lieu de l'installation	p. 20

18.	Reglage du vase d'expansion	p. 32
19.	Facteurs de correction	p. 33
	Facteurs correctifs pour Températures moyennes de l'eau différentes du nominal	p. 33
	Salissement: facteurs de correction pour l'incrustation [K*m²]/ [W]	p. 33
	Glycol propylenic	p. 33
	Glycol d'éthylène	p. 33
20.	Données sonores	p. 34

1 DESCRIPTION DU PRODUIT

WRL est la gamme de refroidisseurs à condensation par eau utilisant le fluide réfrigérant R410A.

Il s'agit d'unités d'intérieur avec des compresseurs hermétiques à spirales, d'échangeurs à plaques côté installation et côté source, répondant parfaitement aux exigences du marché résidentiel : dimensions réduites, facilité de mise en place, faible niveau sonore.

Sur les unités à désurchauffeur, on pourra également produire de l'eau chaude gratuitement.

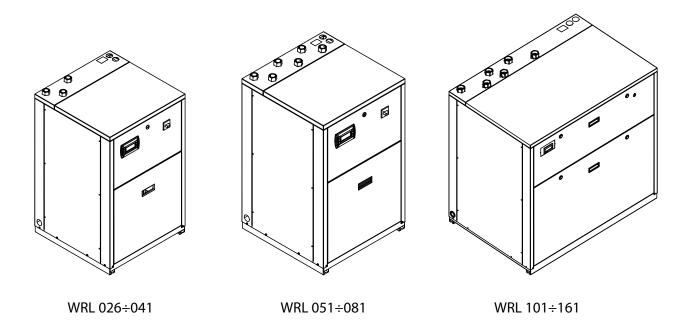
CARACTÉRISTIQUES DE LA SÉRIE

Le bâti, la structure et les panneaux sont en acier traité à l'aide de peintures en polyester anticorrosion.

Les choix technologiques, visant toujours la qualité la plus élevée, garantissent une grande facilité d'installation.

En effet, les raccordements électriques et hydrauliques se trouvent toutes sur le haut de l'unité et facilitent ainsi les opérations d'installation et d'entretien et réduisent également les espaces techniques et leur emplacement dans un volume très réduit.

DÉTENDEUR THERMOSTATIQUE


Détendeur thermostatique mécanique

À partir du configurateur, c'est le composant standard qui permet de travailler avec de l'eau produite, côté utilisateur en mode refroidissement, de 4 °C à + 18 °C.

CONTRÔLE MODUCONTROL

Le panneau de commande de l'unité permet un réglage rapide des paramètres de fonctionnement de l'appareil et leur affichage .L'afficheur est à 4 chiffres et possède plusieurs LED pour la indication du type de fonctionnement , l'affichage des paramètres programmés et des éventuelles alarmes déclenchées . Dans la carte, toutes les réglages par défaut et les modifications éventuelles sont mémorisées .

La régulation par sonde de température extérieure (accessoire) permet un contrôle dynamique de l'eau produite et augmente ainsi l'efficacité énergétique du système.

CONFIGURATEUR 2

Champ		Description
1,2,3		WRL
4,5,6		Taille 026, 031, 041, 051, 071, 081, 101, 141, 161
7		Champ d'utilisation
	0	Détendeur thermostatique mécanique standard (1)
	Υ	Détendeur thermostatique mécanique pour basse température (2)
8		Modèle
	0	Pompe à chaleur réversible côté eau
	Е	Moto-condensation (3)
9		Version
	0	Sans ballon tampon
	Α	Avec ballon tampon
10		Récupération de chaleur
	0	Sans récupération de chaleur
	D	Avec désurchauffeur
11		Kit hydraulique intégré côté source
	0	Sans kit hydraulique
	В	Pompe on-off (4)
	- 1	Pompe inverter (5)
	U	Pompe à grande hauteur d'élévation (6)
		Applications sur les eaux de nappe
	V	Tallie Housiante a 2 Total
12		Kit hydraulique intégré côté du système
	0	Sans kit hydraulique
	N	, · · · · · · · · · · · · · · · · · · ·
	P	Pompe on-off (4)
13		Champs de développement avenir
	0	Champ non utilisé
14		Soft-start Soft-start
	0	Sans soft-start Sans soft-start
	S	Avec soft-start
15		Alimentation
	0	400V~3N 50Hz
	М	230V~50Hz (7)

⁽¹⁾ Eau produite de 4 °C ÷ 18 °C
(2) Eau produite de 4 °C ÷ -8 °C
(3) Expédiée avec la charge d'étanchéité uniquement
(4) Pour les tailles WRL 051 à 081. La vitesse du circulateur doit être fixée lors du premier démarrage avec la pression statique utile requise, pour fonctionner ensuite à débit constant.
(5) Seulement pour les tailles WRL 026 ÷ 081
(6) Seulement pour les tailles WRL 101 ÷ 161
(7) Seulement pour les tailles WRL 026 ÷ 041

3 DESCRIPTION DES COMPOSANTS DE L'UNITÉ

STRUCTURE

Structure portante

Constitués de profilés en tôle d'acier galvanisé à chaud d'une épaisseur adéquate. Peinture avec poudres polyester (RAL 9003).

Réalisée de façon à permettre l'accès facile aux composants internes, pour les opérations de service et de maintenance.

CIRCUIT FRIGORIFIQUE

Compresseurs

Compresseurs hermétiques de type scroll à haute efficacité (montés sur des supports antivibrations élastiques), actionnés par un moteur électrique à deux pôles avec protection thermique interna

Ils sont équipés, de série, d'une résistance électrique antigel alimentée automatiquement à l'arrêt de l'unité à condition que l'unité soit maintenue sous tension.

Échangeur côté installation

Échangeur à plaques soudo-brasées en acier. Il est recouvert à l'extérieur d'un matériel anti-condensation en néoprène à cellules fermées.

Échangeur côté source

Échangeur à plaques soudo-brasées en acier. Il est recouvert à l'extérieur d'un matériel anti-condensation en néoprène à cellules fermées.

Avertissement : Pour les unités d'évaporation, l'échangeur côté source n'est pas présent.

Filtre déshydrateur

De type hermétique-mécanique en matériel hygroscopique, capable de retenir les impuretés et les éventuelles traces d'humidité présentes dans le circuit frigorifique.

Détendeur thermostatique mécanique

La vanne de type mécanique, avec égaliseur externe placé en entrée de l'évaporateur, module le flux de gaz en direction de l'évaporateur en fonction de la charge thermique de façon à garantir au gaz en aspiration un degré correct de surchauffe.

Indicateur de liquide

Il sert à contrôler l'alimentation correcte de l'organe de laminage et l'éventuelle présence d'humidité dans le circuit frigorifique.

CIRCUIT HYDRAULIQUE STANDARD

Filtre à eau

Équipé d'un maillage filtrant en acier, il préserve l'encrassement des échangeurs, côté utilisateur, par les impuretés présentes dans le circuit.

Caractéristiques de l'eau

Plante: Chiller avec échangeur de chaleur à plaques	
PH	7,5-9
Conductivité électrique	100-500μS/cm
Dureté totale	4,5-8,5 dH
Température	< 65°C
Contenu d'oxygène	< 0,1 ppm
Quantité max. glycol	50%
Phosphates (PO ₄)	< 2ppm
Manganèse (Mn)	< 0,05 ppm
Fer (Fe)	< 0,3 ppm
Alcalinité (HCO ₃)	70 - 300 ppm
lons chlorure (CI-)	< 50 ppm
Ions sulfate (SO ₄)	< 50 ppm
Ion sulfure (S)	aucun
Ions aMMonium (NH ₄)	aucun
Silice (SiO ₂)	< 30ppm

Pressostat différentiel

Il contrôle la présence de la circulation d'eau dans les échangeurs. Dans le cas contraire, il bloque l'unité.

Vanne de sécurité

Calibrée à 6 bar et avec l'évacuation dirigeable, elle intervient, en cas de pressions anormales, en évacuant la surpression.

Vanne de purge

Montée sur la partie supérieure de l'installation hydraulique ; et elle assure la décharge des poches d'air éventuellement présentes dans ce dernier.

Robinet d'évacuation

Permet de décharger l'eau du circuit hydraulique.

COMPOSANTS DU CIRCUIT HYDRAULIQUE SUR LES VERSIONS AVEC KIT HYDRONIQUE

Pompe

ll offre une hauteur manométrique utile à l'installation, au net des pertes de charges de l'unité

ATTENTION: En cas d'installation il s'avère obligatoire, pour un bon fonctionnement de la machine, que la pompe soit gérée par la régulation de l'unité.

Vase d'expansion

À membrane avec pré-charge d'azote.

Vanne modulante à 2 voies

Avec signal de 0÷10V.

Pression différentielle max 4 bars/40kPa.

ATTENTION: Lors d'une coupure électrique générale, la vanne ne se referme pas et reste bloquée en position de service. Afin d'éviter des consommations d'eau inutiles, il est conseillé d'installer, en amont du réseau hydrique d'alimentation, un dispositif de sectionnement.

Ballon tampon

En acier afin de réduire les pertes de chaleur et d'éliminer le phénomène de condensation. Il est isolé avec un matériau en polyuréthane d'épaisseur convenable.

Sert à diminuer le nombre de points du compresseur et une température uniforme de l'eau pour être envoyés aux utilisateurs.

COMPOSANTS CONTRÔLE ET SÉCURITÉ

Transducteur de basse pression

Il est placé sur le côté à haute pression du circuit frigorifique, et il communique à la carte de contrôle la pression de travail, en enclenchant une pré-alarme dans le cas de pressions anormales.

Transducteur de haute pression

Il est placé sur le côté à haute pression du circuit frigorifique, et il communique à la carte de contrôle la pression de travail, en enclenchant une pré-alarme dans le cas de pressions anormales.

Pressostat de haute pression

A calibrage fixe, il est placé sur le côté à basse pression du circuit frigorifique, et il arrête le compresseur en cas de pressions anormales de travail.

TABLEAU ÉLECTRIQUE DE CONTRÔLE ET PUISSANCE

Équipé de :

- Sectionneur général avec blocage de porte;
- Interrupteurs magnétothermiques et contacteurs des compresseurs;
- Bornes de raccordement au clavier à distance ;
- Bornes pour la signalisation alarme ;
- Bornes pour la signalisation de l'état d'allumage du compresseur ;
- Bornes d'entrée du signal d'alarme de la chaudière et des résistances;
- Bornes d'entrée du signal d'alarme du pressostat différentiel;
- Bornes de la sonde de température extérieure (ACCESSOIRE);
- Démarrage ralenti (option);
- Câbles numérotés circuit de commande ;
- Bornes de la vanne à trois voies;
- Contrôle séquence équilibrage entre les phases.

Sectionneur avec blocage de porte

On peut, au moyen du levier d'ouverture du tableau, enlever la tension pour accéder au tableau électrique.

Pendant les interventions de maintenance, on peut bloquer ce levier avec un ou plusieurs cadenas pour empêcher une mise sous tension de la machine non souhaitée.

Compensation du point de consigne sur l'eau du refroidisseur en fonction de la température extérieure

Adaptation du point de consigne de l'unité en fonction de la température extérieure, permettant un meilleur confort et une économie d'énergie.

■ Le point de consigne de retour de l'installation est établi en fonction de la température extérieure. Fonction garantie en présence de la sonde d'air extérieur « KSAE » (ACCESSOIRE).

Contrôleur électronique ModuControl

Le panneau de commandes de l'unité permet un Réglage rapide des paramètres de fonctionnement de l'appareil et leur affichage.

L'afficheur est à 4 chiffres et possède plusieurs DEL pour la indication du type de fonctionnement, l'affichage des paramètres programmés et des éventuelles alarmes déclenchées. Sur la carte, sont mémorisés tous les réglages par défaut et les modifications éventuelles.

Sur la carte, sont mémorisés tous les réglages par défaut et les modifications éventuelles. Avec l'installation de l'accessoire du panneau à distance PR3, on pourra alors commander, à distance, l'allumage et la coupure, l'imposition du mode de fonctionnement (froid - chaud) et la visualisation de l'historique des alarmes.

Après une coupure de courant, l'unité est en mesure de se remettre en marche automatiquement en conservant les réglages d'origine.

Liste des fonctions

- Paramétrage des temps de marche et d'arrêt du compresseur afin d'éviter des cycles ON/ OFF trop rapprochés.
- Afin de prévenir toute rupture de l'échangeur à plaques par gel de l'eau, il a été prévu 3 antigels internes « géothermie, installation, installation et zones ». Le microprocesseur prévoit également le blocage du compresseur si la température relevée par la sonde en sortie de l'échangeur est inférieure au point de consigne antigel.
- Alarme sur le débit d'eau actionnée par les pressostats différentiels installés de série.
- Contrôle de condensation géré par la variation de vitesse des circulateurs à l'aide de systèmes de coupure de phase ou d'inverseur, d'une vanne modulante à deux voies, de pompes ON/OFF.

Autres fonctions

- Gestion d'une ressource extérieure d'intégration dédiée à l'ECS.
- Gestion des installations à pompe à chaleur et à chaudière.
- Tranches horaires de la programmation journalière et hebdomadaire.

Thermorégulation

La régulation de température se réfère au retour d'eau de l'installation. Les points de consigne imposés se réfèrent à la température d'eau de retour.

Si, par exemple, le point de consigne est imposé à $+30^{\circ}$ C, la température de refoulement sera de $+35^{\circ}$ C.

Pompe de circulation côté installation

La carte électronique prévoit une sortie pour la gestion de la pompe de circulation, toujours en marche en modalité COOLING et HEATING, à l'arrêt avec un retard d'une minute après la coupure de l'unité (stand-by).

Pompe côté source

La carte électronique prévoit une sortie pour la gestion de la pompe côté source (voir le configurateur pour les pompes disponibles).

La pompe côté source est allumée avant le démarrage du compresseur et éteinte 30 secondes après la coupure.

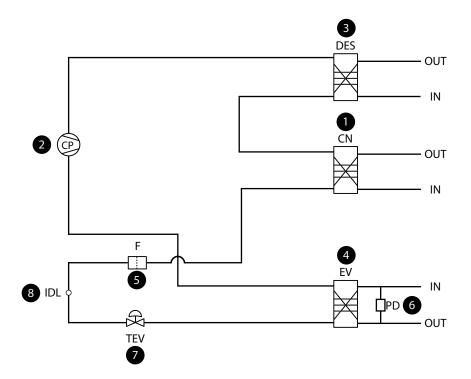
Alarme antigel

La fonction antigel n'est active que lorsque l'unité est allumée ou en standbv.

Afin de prévenir toute rupture de l'échangeur à plaques par gel de l'eau, le microprocesseur prévoit le blocage du compresseur si la température relevée par la sonde de température en sortie de l'échangeur s'avère inférieure à $+4^{\circ}$ C.

Cette température de consigne antigel ne peut être modifiée que par un centre d'assistance agréé et uniquement après avoir vérifié la présence d'une solution antigel dans le circuit hydrique.

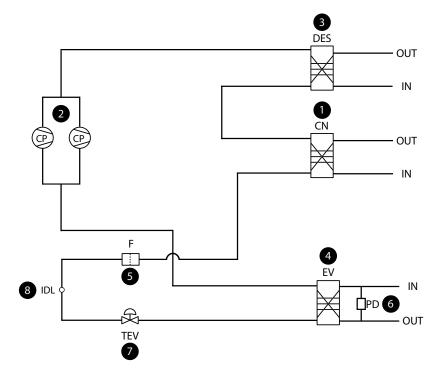
L'intervention de cette alarme entraîne le blocage du compresseur et non de la pompe, qui reste active.


Système de supervision

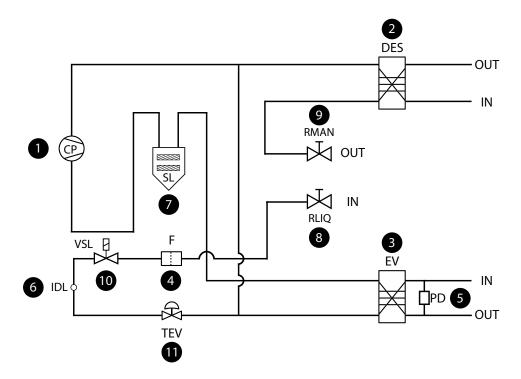
MODRIIS

Pour des exigences différentes, contacter le siège.

4 SCHÉMAS DU CIRCUIT FRIGORIFIQUE DE PRINCIPE

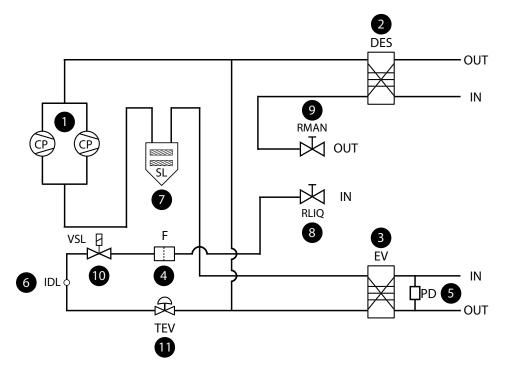

WRL STANDARD 026/081

LÉGENDE :


- Condenseur
- Compresseur
- Désurchauffeur
- Évaporateur
- Filtre déshydrateur
- Pressostat différentiel
- Détendeur thermostatique électronique
- Indicateur de liquide

WRL STANDARD 101/161

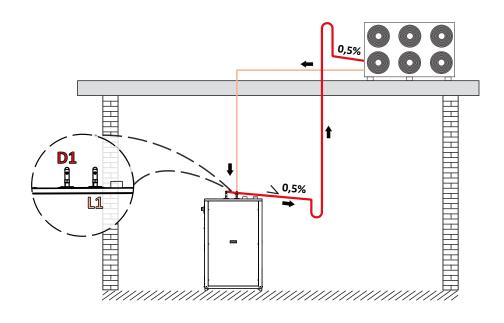
LÉGENDE :

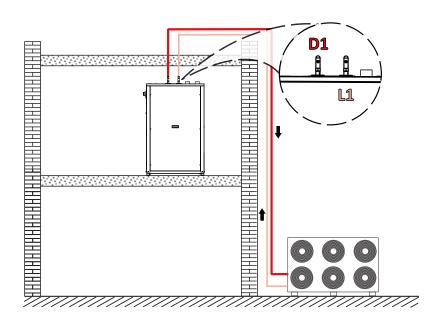

- Condenseur
- Compresseur
- Désurchauffeur 3 4
- Évaporateur
- Filtre déshydrateur
- Pressostat différentiel
- Détendeur thermostatique électronique
- Indicateur de liquide

LÉGENDE:

- Compresseur
- Désurchauffeur
- 3 Évaporateur
- Filtre déshydrateur
- Pressostat différentiel Indicateur de liquide
- 6 7 Réservoir de liquide
- 8 Robinet de retour du liquide
- 9 Robinet de liquide
- 10 Vanne solénoïde du liquide
- 11 Détendeur thermostatique

WRL-E 101/161


LÉGENDE :

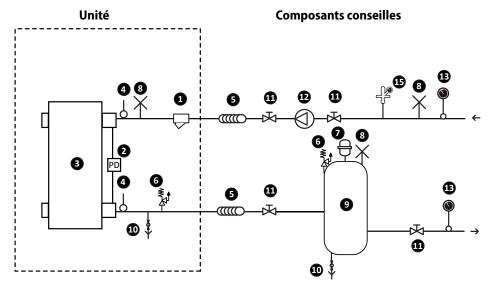

- Compresseur
- Désurchauffeur
- Évaporateur 3
- Filtre déshydrateur
- Pressostat différentiel 5
- 6 Indicateur de liquide
- 7 Réservoir de liquide
- 8 Robinet de retour du liquide
- Robinet de liquide
- 10 Vanne solénoïde du liquide
- Détendeur thermostatique

5 WRL-E LIGNES FRIGORIFIQUES

Taille			026	031	041	051	071	081	101	141	161
Longueur des lignes frigorifiques de / à 0	- 10 m										
Ligne gaz (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	15,9	15,9	18,0	18,0
Ligne liquide (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	12,7	15,9	18,0	18,0
Charge supplémentaire (C1)	E	g/m	54	54	54	103	103	108	161	214	214
Longueur des lignes frigorifiques de / à 10	0 - 20 m										
Ligne gaz (C1)	E	Ø	9,5	9,5	12,7	12,7	12,7	15,9	15,9	18,0	18,0
Ligne liquide (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	12,7	15,9	18,0	18,0
Charge supplémentaire (C1)	E	g/m	54	54	58	103	103	108	161	214	214
Longueur des lignes frigorifiques de / à 20	0 - 30 m										
Ligne gaz (C1)	E	Ø	9,5	12,7	12,7	12,7	15,9	15,9	15,9	18,0	18,0
Ligne liquide (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	12,7	15,9	18,0	18,0
Charge supplémentaire (C1)	E	g/m	54	58	58	103	108	108	161	214	214

DISPOSITION LIGNES FRIGORIFIQUES

Légende : L1 = Liquide D1 = De refoulement

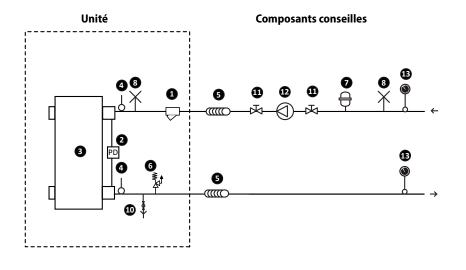


Pour plus d'informations, veuillez contacter l'entreprise.

6 SCHÉMAS HYDRAULIQUES DE PRINCIPE

6.1 CIRCUIT HYDRAULIQUE WRL / STANDARD

Circuit hydraulique côté applications

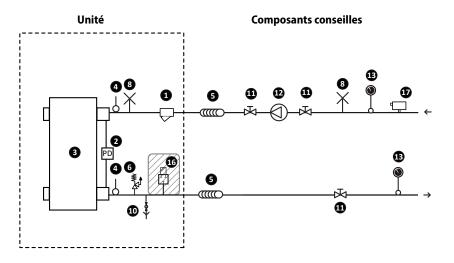

COMPOSANTS FOURNIS DE SÉRIE

- 1 Filtre à eau
- 2 Pressostat différentiel
- 3 Échangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 8 Vanne de purge
- 10 Robinet d'évacuation

COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉ-RIEUR DE L'UNITÉ (À LA CHARGE DE L'INSTALLATEUR)

- 5 Joints antivibration
 - Soupape de sûreté
- 7 Vase d'expansion
- 8 Vanne de purge
- 9 Ballon tampon
- 10 Robinet d'évacuation
- 11 Robinet d'arrêt
- 12 Pompe
- 13 Manomètre
- 15 Groupe de chargement

Circuit hydraulique côté géothermique


COMPOSANTS FOURNIS DE SÉRIE

- 1 Filtre à eau
- 2 Pressostat différentiel
- Echangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 8 Vanne de purge
- 10 Robinet d'évacuation

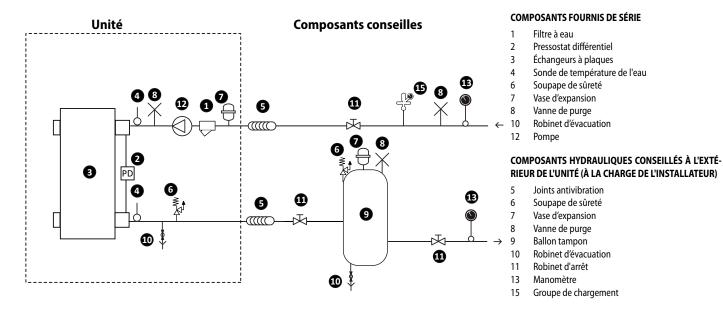
COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉRIEUR DE L'UNITÉ (À LA CHARGE DE L'INS-TALLATEUR)

- 5 Joints antivibration
- 7 Vase d'expansion
- 8 Vanne de purge
- 11 Robinet d'arrêt
- 12 Pompe
- 13 Manomètre

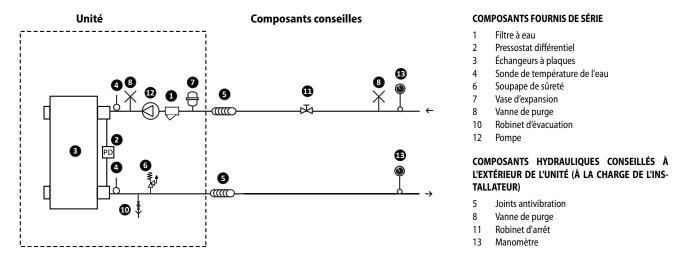
Circuit hydraulique côté puits

COMPOSANTS FOURNIS DE SÉRIE

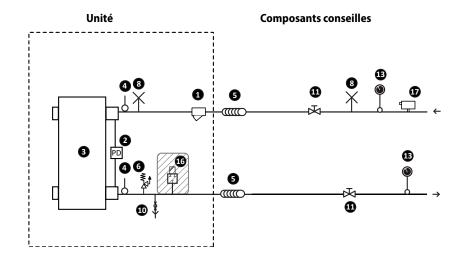
- 1 Filtre à eau
- 2 Pressostat différentiel
- 3 Échangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 8 Vanne de purge
- 10 Robinet d'évacuation


COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉ-RIEUR DE L'UNITÉ (À LA CHARGE DE L'INSTALLATEUR)

- 5 Joints antivibration
- 8 Vanne de purge
- 11 Robinet d'arrêt
- 12 Pompe
- 13 Manomètre
- 16 Vanne modulante à 2 voies
- 17 Fluxostat


16 23/05 – 5383512_06

6.2 CIRCUIT HYDRAULIQUE WRL / POMPES

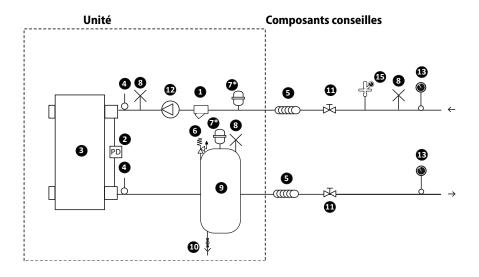

Circuit hydraulique côté applications

Circuit hydraulique côté géothermique

Circuit hydraulique côté puits

COMPOSANTS FOURNIS DE SÉRIE

- 1 Filtre à eau
- 2 Pressostat différentiel
- 3 Échangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 8 Vanne de purge
- 10 Robinet d'évacuation


COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉRIEUR DE L'UNITÉ (À LA CHARGE DE L'INS-TALLATEUR)

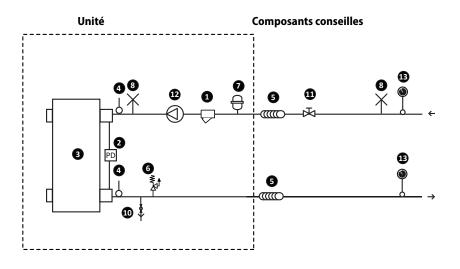
- 5 Joints antivibration
- 3 Vanne de purge
- 11 Robinet d'arrêt
- 13 Manomètre
- 16 Vanne modulante à 2 voies

17 Fluxostat

6.3 CIRCUIT HYDRAULIQUE WRL-A / BALLON ET POMPES

Circuit hydraulique côté applications

7* Vase d'expansion: monté sur le ballon du 026÷081; monté avant le filtre du 101÷161.

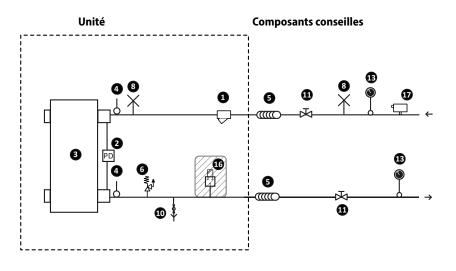

COMPOSANTS FOURNIS DE SÉRIE

- 1 Filtre à eau
- 2 Pressostat différentiel
- 3 Échangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 7 Vase d'expansion
- 8 Vanne de purge
- 9 Ballon tampon
- 10 Robinet d'évacuation
- 12 Pompe

COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉ-RIEUR DE L'UNITÉ (À LA CHARGE DE L'INSTALLATEUR)

- 5 Joints antivibration
- 8 Vanne de purge
- 11 Robinet d'arrêt
- 13 Manomètre
- 15 Groupe de chargement

Circuit hydraulique côté géothermique


COMPOSANTS FOURNIS DE SÉRIE

- 1 Filtre à eau
- 2 Pressostat différentiel
- 3 Échangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 7 Vase d'expansion
- 8 Vanne de purge
- 10 Robinet d'évacuation
- 12 Pompe

COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉRIEUR DE L'UNITÉ (À LA CHARGE DE L'INSTALLATEUR)

- 5 Joints antivibration
- 8 Vanne de purge
- 11 Robinet d'arrêt
- 13 Manomètre

Circuit hydraulique côté puits

COMPOSANTS FOURNIS DE SÉRIE

- 1 Filtre à eau
- 2 Pressostat différentiel
- 3 Échangeurs à plaques
- 4 Sonde de température de l'eau
- 6 Soupape de sûreté
- 8 Vanne de purge
- 10 Robinet d'évacuation

COMPOSANTS HYDRAULIQUES CONSEILLÉS À L'EXTÉRIEUR DE L'UNITÉ (À LA CHARGE DE L'INSTALLATEUR)

- 5 Joints antivibration
- 8 Vanne de purge
- 11 Robinet d'arrêt
- 13 Manomètre
- 16 Vanne modulante à 2 voies
- 17 Fluxostat

6.4 CARACTÉRISTIQUES DE L'EAU

Plante: Chiller avec échangeur de chaleur à plaques	
PH	7,5-9
Conductivité électrique	100-500μS/cm
Dureté totale	4,5-8,5 dH
Température	< 65°C
Contenu d'oxygène	< 0,1 ppm
Quantité max. glycol	50%
Phosphates (PO ₄)	< 2ppm
Manganèse (Mn)	< 0,05 ppm
Fer (Fe)	< 0,3 ppm
Alcalinité (HCO ₃)	70 - 300 ppm
Ions chlorure (CI-)	< 50 ppm
lons sulfate (SO ₄)	< 50 ppm
Ion sulfure (S)	aucun
lons aMMonium (NH ₄)	aucun
Silice (SiO ₂)	< 30ppm

- REMARQUE: Toujours prévoir un filtre pour l'eau en amont (à l'entrée) de l'échangeur. Afin de garantir les limites d'acceptabilité de l'eau, il est suggéré d'utiliser un filtre dont la maille est inférieure ou égale à 0,35 mm pour les tailles 026-031-041, et un filtre dont la maille est de 0,5 mm pour les tailles 051-071-081-101-141-161.
- REMARQUE: Il est d'une importance fondamentale de contrôler la concentration d'oxygène dans l'eau, en particulier dans les installations à vase ouvert. Ce type d'installations, en effet, est très sensible au phénomène de l'extra-oxygénation de l'eau (un événement qui peut être favorisé par le mauvais positionnement de certains composants) Ce phénomène peut déclencher des processus de corrosion et de perçage ultérieur de l'échangeur de chaleur et des tuyaux.

7 CHOIX ET LE LIEU DE L'INSTALLATION

La pompe à chaleur WRL est destinée à des applications en intérieur.

Elle est expédiée depuis l'usine déjà réceptionnée et n'exige que les raccordements électriques et hydrauliques.

Avant de procéder à l'installation de l'unité, convenir, avec le client, de la position de l'appareil, en prêtant attention aux points suivants:

- Le plan d'appui doit être en mesure de soutenir le poids de l'unité.
- Les distances de sécurité entre les unités et les autres appareils ou structures doivent être scrupuleusement respectées.
- L'unité doit être installée par un technicien agréé conformément aux lois nationales en vigueur dans le pays de destination.
- Il est fait obligation de prévoir les espaces techniques permettant les interventions d'entretien ordinaire et extraordinaire.
- Tenir compte du fait que le refroidisseur en marche peut transmettre des vibrations. Il est donc conseillé de monter les supports antivibratoires VT (ACCESSOIRES), en les fixant au bâti selon le schéma de montage.
- Fixer l'unité en vérifiant qu'elle est bien de niveau.
- La machine doit être installée dans un local technique ou, pour le moins, un local équipé d'un siphon de sol.
- Il est fait obligation de respecter les espaces techniques minimaux indiqués, la hauteur et l'arrière doivent être dimensionnés en fonction du type et du lieu d'installation.

20 23/05 – 5383512_06

8 ACCESSOIRES

ACCESSOIRES

AERBAC-MODU: Interface de communication Ethernet pour les protocoles Bacnet/IP, Modbus TCP/IP, SNMP

AERBACP: Interface de communication Ethernet pour les protocoles Bacnet/IP, Modbus TCP/IP, SNMP

AERSET: Permet de compenser automatiquement les points de consigne de l'unité à laquelle il est raccordé, en utilisant un signal 0-10 V en MODBUS en entrée. Accessoire obligatoire MODU-485BL.

KSAE: Sonde d'air extérieur.

MODU-485BL: Interface RS-485 pour systèmes de supervision avec protocole MODBUS

PR3: Panneau à distance simplifié. Il permet d'effectuer les contrôles de base de l'unité avec signalisation des alarmes. Installation à distance avec câble blindé jusqu'à 150 m.

VT: Supports antivibratiles

VPL: Vanne pressostatique; elle est fournie avec raccords et est directement actionnée par la pression de condensation; elle module la quantité d'eau nécessaire pour le refroidissement du condenseur en maintenant constante la température de condensation.

COMPATIBILITÉ DES ACCESSOIRES

Modèle	Ver	026	031	041	051	071	081	101	141	161
AERBAC-MODU	°,A	•	•	•	•	•	•	•	•	•
AERBACP	°,A	•	•	•	•	•	•	•	•	•
AERSET	°,A	•	•	•	•	•	•	•	•	•
KSAE	°,A	•	•	•	•	•	•	•		•
MODU-485BL	°,A	•	•	•	•	•	•	•	•	•
PR3	°,A	•	•	•	•	•	•	•	•	•

Version	Kit hydraulique intégré côté source	Kit hydraulique intégré côté du système	026	031	041	051	071
0	0	0	VT9	VT9	VT9	VT9	VT9
0	B,I,U,V	N,P	VT9	VT9	VT9	VT9	VT9
A	°.B.I.U.V	°.N.P	VT15	VT15	VT15	VT15	VT15

Version	Kit hydraulique intégré côté source	Kit hydraulique intégré co du système	ôté	081	10	1	141		161	
٥	0	0	o o		VT	15	VT15	,	VT15	
٥	U	N,P		VT9	VT	15	VT15		VT15	
٥	B,I,V	N,P		VT9	VT	15	VT15		-	
A	°,B,I,U,V	°,N,P		VT15 VT15A		5A	VT15A		VT15A	
non disponible										
Ver	026	031	041	051	071	081	101	141	161	
°,A	VPL1	VPL1	VPL2	VPL2	VPL3	VPL3	VPL4	VPL4	VPL4	

23/05 – 5383512_06 21

DONNÉES TECHNIQUES 9

WRL - °

Taille		026	031	041	051	071	081	101	141	161
ALIMENTATION: °										
Performances en mode refroidissement 12 °C/7 °C(1)										
Puissance frigorifique	kW	6,7	8,4	11,3	14,7	19,3	21,9	29,5	38,5	43,9
Puissance absorbée	kW	1,5	1,8	2,6	3,1	4,0	4,7	6,2	8,1	9,5
Courant total absorbé froid	A	3,1	2,6	4,9	6,4	7,4	9,1	13,0	15,0	18,0
EER	W/W	4,49	4,74	4,39	4,70	4,77	4,63	4,72	4,75	4,62
Débit eau côté source	l/h	1396	1735	2375	3054	3978	4538	6100	7947	9077
Pertes de charge côté source	kPa	28	30	35	32	40	46	42	57	66
Débit eau côté installation	l/h	1154	1447	1955	2541	3320	3770	5078	6638	7555
Pertes de charge côté installation	kPa	15	17	23	21	26	30	25	34	38
Performances en chauffage 40 °C / 45 °C (2)										
Puissance thermique	kW	7,7	9,3	12,6	16,3	21,0	24,0	32,5	42,1	48,0
Puissance absorbée	kW	1,9	2,3	3,2	4,0	5,1	5,9	8,0	10,2	12,0
Courant total absorbé chaud	A	4,1	3,4	6,1	8,2	9,2	11,0	16,0	18,0	23,0
COP	W/W	3,93	4,04	3,94	4,05	4,17	4,04	4,06	4,14	4,02
Débit eau côté source	l/h	1680	2053	2767	3602	4708	5325	7200	9414	10671
Pertes de charge côté source	kPa	32	34	46	42	52	60	50	68	76
Débit eau côté installation	l/h	1326	1607	2181	2819	3647	4159	5629	7284	8315
Pertes de charge côté installation	kPa	25	26	30	27	34	39	36	48	55
ALIMENTATION: M										
Performances en mode refroidissement 12 °C/7 °C(1)										
Puissance frigorifique	kW	6,6	8,3	11,3	-	-	-	-	-	-
Puissance absorbée	kW	1,5	1,8	2,5	-	-	-	-	-	-
Courant total absorbé froid	Α	7,2	9,2	12,0	-	-	-	-	-	-
EER	W/W	4,30	4,50	4,56	-	-	-	-	-	-
Débit eau côté source	l/h	1386	1731	2359	-	-	-	-	-	-
Pertes de charge côté source	kPa	28	29	36	-	-	-	-	-	-
Débit eau côté installation	l/h	1137	1430	1955	-	-	-	-	-	-
Pertes de charge côté installation	kPa	15	17	23	-	-	-	-	-	-
Performances en chauffage 40 °C / 45 °C (2)										
Puissance thermique	kW	7,6	9,4	12,5	-	-	-	-	-	-
Puissance absorbée	kW	2,0	2,4	3,1	-	-	-	-	-	-
Courant total absorbé chaud	A	9,3	12,0	15,0	-	-	-	-	-	-
COP	W/W	3,86	3,89	4,05	-	-	-	-	-	-
Débit eau côté source	l/h	1662	2053	2778	-	-	-	-	-	-
Pertes de charge côté source	kPa	32	35	46	-	-	-	-	-	-
Débit eau côté installation	I/h	1319	1626	2171	-	-	-	-	-	-
Pertes de charge côté installation	kPa	25	26	30	-	-	-	-	-	-

⁽¹⁾ Données 14511:2022; Eau côté du système 12 °C / 7 °C; Eau côté source 30 °C / 35 °C (2) Données 14511:2022; Eau côté du système 40 °C / 45 °C; Eau côté source 10 °C / 7 °C

Taille		026	031	041	051	071	081	101	141	161
ALIMENTATION: °										
Performances en mode refroidissement 12 °C/7 °C(1)										
Puissance frigorifique	kW	6,8	8,5	11,4	14,9	19,4	22,0	29,8	38,9	44,2
Puissance absorbée	kW	1,4	1,7	2,5	3,1	3,9	4,6	6,3	8,1	9,4
Courant total absorbé froid	Α	3,7	3,3	5,6	7,5	8,6	10,0	14,0	17,0	20,0
EER	W/W	4,75	5,02	4,62	4,84	4,93	4,78	4,75	4,79	4,69
Débit eau côté source	l/h	1396	1735	2375	3054	3978	4538	6100	7947	9077
Hauteur manométrique côté source	kPa	59	53	36	63	43	28	116	137	125
Débit eau côté installation	l/h	1154	1447	1955	2541	3320	3770	5078	6638	7555
Hauteur manométrique côté du système	kPa	74,0	70,0	56,0	79,0	66,0	56,0	148,0	164,0	157,0
Performances en chauffage 40 °C / 45 °C (2)										
Puissance thermique	kW	7,6	9,2	12,5	16,1	20,9	23,8	32,2	41,6	47,6
Puissance absorbée	kW	1,9	2,2	3,1	3,9	4,9	5,8	8,0	10,1	11,8
Courant total absorbé chaud	A	4,7	4,0	6,7	9,3	10,0	13,0	18,0	20,0	25,0
COP	W/W	4,05	4,17	4,05	4,11	4,24	4,09	4,01	4,13	4,04
Débit eau côté source	I/h	1680	2053	2767	3602	4708	5325	7200	9414	10671
Hauteur manométrique côté source	kPa	52	43	16	46	20	4	90	121	109
Débit eau côté installation	I/h	1326	1607	2181	2819	3647	4159	5629	7284	8315
Hauteur manométrique côté du système	kPa	63,0	59,0	46,0	70,0	54,0	41,0	130,0	148,0	138,0
ALIMENTATION: M										
Performances en mode refroidissement 12 °C/7 °C(1)										
Puissance frigorifique	kW	6,7	8,4	11,4	-	-	-	-	-	-
Puissance absorbée	kW	1,5	1,8	2,4	-	-	-	-	-	-
Courant total absorbé froid	Α	7,8	9,9	12,0	-	-	-	-	-	-
EER	W/W	4,54	4,75	4,80	-	-	-	-	-	-
Débit eau côté source	l/h	1386	1731	2359	-	-	-	-	-	-
Hauteur manométrique côté source	kPa	59	54	36	-	-	-	-	-	-
Débit eau côté installation	l/h	1137	1430	1955	-	-	-	-	-	-
Hauteur manométrique côté du système	kPa	74,0	70,0	56,0	-	-	-	-	-	-
Performances en chauffage 40 °C / 45 °C (2)										
Puissance thermique	kW	7,5	9,3	12,4	-	-	-	-	-	-
Puissance absorbée	kW	1,9	2,3	3,0	-	-	-	-	-	-
Courant total absorbé chaud	A	9,9	13,0	15,0	-	-	-	-	-	-
COP	W/W	3,97	4,01	4,17	-	-	-	-	-	-
Débit eau côté source	I/h	1662	2053	2778	-	-	-	-	-	-
Hauteur manométrique côté source	kPa	52	43	16	-	-	-	-	-	-
Débit eau côté installation	I/h	1319	1626	2171	-	-	-	-	-	-
Hauteur manométrique côté du système	kPa	63,0	59,0	45,0	_	_	_	_		

DONNÉES TECHNIQUES MOTO-CONDENSATION

Taille			026	031	041	051	071	081	101	141	161
Performances en mode refroidissement	12 °C / 7 °C (1)										
Puissance frigorifique	E	kW	6,3	7,8	10,4	13,4	17,4	19,7	26,8	34,7	39,4
Puissance absorbée	E	kW	1,7	2,0	2,8	3,6	4,5	5,3	7,2	9,1	10,6
Courant total absorbé froid	E	A	3,0	3,0	5,0	7,0	8,0	10,0	14,0	17,0	21,0
EER	E	W/W	3,71	3,90	3,71	3,72	3,87	3,72	3,72	3,81	3,72
Débit eau côté installation	E	l/h	1082	1340	1787	2302	2990	3385	4605	5962	6769
Pertes de charge côté installation	E	kPa	13	15	20	17	21	25	21	28	31
Longueur des lignes frigorifiques de / à () - 10 m										
Ligne gaz (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	15,9	15,9	18,0	18,0
Ligne liquide (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	12,7	15,9	18,0	18,0
Charge supplémentaire (C1)	E	g/m	54	54	54	103	103	108	161	214	214

⁽¹⁾ Données 14511:2022; Eau côté du système 12 °C / 7 °C; Eau côté source 30 °C / 35 °C

UNITÉ AVEC DÉSURCHAUFFEUR

Taille			026	031	041	051	071	081	101	141	161
Performances en refroidissement avec d	ésurchauffeur (1)										
Puissance thermique récupérée	°,A	kW	1,4	1,7	2,3	3,0	3,9	4,4	6,0	7,8	8,9
Débit d'eau côté désurchauffeur	°,A	l/h	243	295	400	521	678	765	1043	1356	1547
Pertes de charge côté désurchauffeur	°,A	kPa	1	1	1	5	5	5	6	6	6
Désurchauffeur											
Туре	°,A	Туре					Plaques				

⁽¹⁾ Eau côté application 12 °C/7 °C ; Eau côté source 30 °C/35 °C ; Eau désurchauffeur 40 °C/45 °C

⁽¹⁾ Données 14511:2022; Eau côté du système 12 °C/7 °C; Eau côté source 30 °C/35 °C (2) Données 14511:2022; Eau côté du système 40 °C/45 °C; Eau côté source 10 °C/7 °C

10 INDICES ÉNERGÉTIQUES (RÈG. (UE) 2016/2281)

WRL - °

Taille		026	031	041	051	071	081	101	141	161
ALIMENTATION: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,93	4,29	4,13	4,51	4,66	4,52	4,93	4,93	4,75
Efficacité saisonnière	%	154,0%	168,5%	162,1%	177,3%	183,3%	177,8%	194,1%	194,0%	187,1%
UE 811/2013 performances en conditions climatiqu	ies moyennes (average) - 3	5 °C - Pdesignh ≤	70 kW (2)							
Pdesignh	kW	11	14	17	23	30	35	45	60	68
SCOP	W/W	5,08	5,45	5,38	5,50	5,48	5,33	6,03	5,85	5,50
ηsh	%	195.0%	210.0%	207.0%	212.0%	211.0%	205.0%	233.0%	226.0%	212.0%
Classe d'efficacité énergétique		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
ALIMENTATION: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,77	4,13	4,27	-	-	-	-	-	-
Efficacité saisonnière	%	147,9%	162,0%	167,6%	-	-	-	-	-	-
UE 811/2013 performances en conditions climatiqu	ies moyennes (average) - 3	5 °C - Pdesignh ≤	70 kW (2)							
Pdesignh	kW	11	14	17	-	-	-	-	-	-
SCOP	W/W	5,15	5,50	5,18	-	-	-	-	-	-
ηsh	%	198.0%	212.0%	199.0%	-	-	-	-	-	-
Classe d'efficacité énergétique		A+++	A+++	A+++	-	-	-	-	-	-

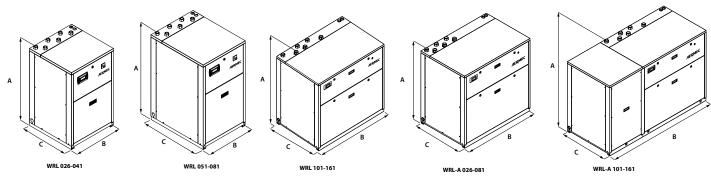
⁽¹⁾ Calcul effectué avec un débit d'eau FIXE et une température de sortie VARIABLE. (2) Efficacités dans des applications pour basse température (35 °C)

WRL ABP

Taille		026	031	041	051	071	081	101	141	161
ALIMENTATION: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	5,00	5,37	5,22	5,38	5,62	5,30	5,31	5,27	5,21
Efficacité saisonnière	%	196,9%	211,7%	205,8%	212,0%	221,7%	208,8%	209,2%	207,7%	205,5%
UE 811/2013 performances en conditions climatiq	ues moyennes (average) - 3	5 °C - Pdesignh ≤	70 kW (2)							
Pdesignh	kW	10	13	17	22	30	34	44	59	66
SCOP	W/W	5,78	6,15	5,75	6,13	5,75	5,45	6,00	5,95	5,60
ηsh	%	223.0%	238.0%	222.0%	237.0%	222.0%	210.0%	232.0%	230.0%	216.0%
Classe d'efficacité énergétique		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
ALIMENTATION: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,73	5,20	5,22	-	-	-	-	-	-
Efficacité saisonnière	%	186,3%	205,1%	205,6%	-	-	-	-	-	-
UE 811/2013 performances en conditions climatiq	ues moyennes (average) - 3	5 °C - Pdesignh ≤	70 kW (2)							
Pdesignh	kW	11	13	17	-	-	-	-	-	-
SCOP	W/W	5,90	6,28	5,55	-	-	-	-	-	-
ηsh	%	228.0%	243.0%	214.0%	-	-	-	-	-	-
Classe d'efficacité énergétique		A+++	A+++	A+++	-	-	-	-	-	-

⁽¹⁾ Calcul effectué avec un débit d'eau FIXE et une température de sortie VARIABLE. (2) Efficacités dans des applications pour basse température (35 °C)

11 DONNÉES TECHNIQUES GÉNÉRALES


Taille			026	031	041	051	071	081	101	141	161
Compresseur											
Туре	°,A	Туре					Scroll				
Nombre	°,A	n°	1	1	1	1	1	1	2	2	2
Circuits	°,A	n°	1	1	1	1	1	1	1	1	1
Réfrigérant	°,A	Туре					R410A				
Charge en fluide frigorigène (1)	°,A	kg	1,1	1,2	1,7	2,0	2,2	2,3	3,2	3,8	4,3
Huile	°,A	Туре	Emkarate RL 32 3MAF	Emkarate RL 32 3MAF	FV68S	FV68S	FV68S	FV68S	FV68S	FV68S	FV68S
Échangeur côté source											
Туре	°,A	Туре					Plaques				
Nombre	°,A	n°	1	1	1	1	1	1	1	1	1
Échangeur côté installation											
Туре	°,A	Туре					Plaques				
Nombre	°,A	n°	1	1	1	1	1	1	1	1	1
Raccords hydrauliques côté source											
Raccords (in/out)	°,A	Туре					Gas - F				
Raccords (in/out)	°,A	Ø					1″1/4				
Raccords hydrauliques côté installation											
Raccords (in/out)	°,A	Туре					Gas - F				
Raccords (in/out)	°,A	Ø					1"1/4				
Données sonores calculées en mode refroid	lissement (2)										
Niveau de puissance sonore	°,A	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
Niveau de pression sonore (10 m)	•	dB(A)	24,3	25,8	26,3	27,7	28,7	29,2	30,6	31,6	32,1
iniveau de pression sonote (10 III)	A	dB(A)	24,1	25,6	26,1	27,6	28,6	29,1	30,5	31,5	32,0

DONNÉES ÉLECTRIQUES

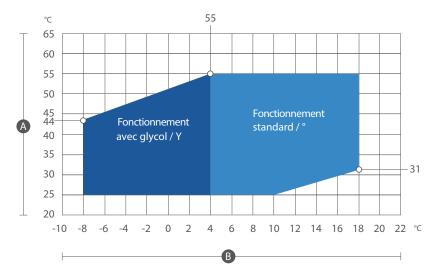
Données électriques

Taille			026	031	041	051	071	081	101	141	161
Données électriques											
Courant maximal (FLA)	0	A	8,0	8,0	15,0	17,0	21,0	22,0	32,0	40,0	41,0
	М	A	18,0	21,0	34,0	-	-	-	-	-	-
Course de démonse « (LDA)	0	A	34,0	37,0	65,0	75,0	75,0	75,0	90,0	94,0	95,0
Courant de démarrage (LRA)	M	A	63,0	84,0	119,0	-	-	-	-	-	-
Courant de démarrage avec Soft-Start	0	A	26,0	28,0	48,0	55,0	55,0	55,0	68,0	72,0	73,0
	M	A	45.0	45.0	45.0	_	-	-	_	_	_

DIMENSIONS

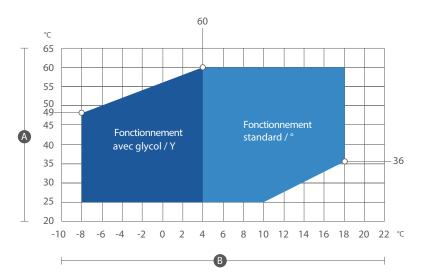
Taille			026	031	041	051	071	081	101	141	161
Dimensions et poids											
Λ.	٥	mm	976	976	976	1126	1126	1126	1126	1126	1126
A	A	mm	1126	1126	1126	1126	1126	1126	1126	1126	1126
В	٥	mm	605	605	605	605	605	605	1155	1155	1155
	A	mm	1155	1155	1155	1155	1155	1155	1755	1755	1755
·	0	mm	603	603	603	773	773	773	773	773	773
C	A	mm	773	773	773	773	773	773	773	773	773
Poids à vide	0	kg	120	125	130	150	170	180	260	270	280
	A	kg	190 (1)	200 (1)	210 (1)	230 (1)	250 (1)	260 (1)	340 (1)	350 (1)	360 (1)

⁽¹⁾ Unité avec deux échangeurs et ballon tampon, sans pompe


⁽¹⁾ La charge indiquée dans le tableau est une valeur estimée et préliminaire. La valeur finale de la charge de réfrigérant est indiquée sur la plaquette technique de l'unité. Pour plus d'informations, contacter le siège.
(2) Puissance acoustique: calculée sur la base des mesures effectuées en accord avec la norme UNI EN ISO 9614-2, conformément aux conditions requises de la certification Eurovent.; Pression sonore mesurée en champ libre, à 10 m de la surface externe de l'unité , (conformément à la norme UNI EN ISO 3744)

12 LIMITES DE FONCTIONNEMENT

Les unités, en configuration standard, ne sont pas adéquates pour une installation en milieu agressif. Les valeurs indiquée se réfèrent aux limites de température min. et max. de l'unité, pour de plus amples informations, consultez le programme de sélection Magellano disponible sur le site Aermec.


Les limites de température min. et max sont mises en évidence dans l'enveloppe. Il est recommandé de tenir compte de ces températures si le transport est effectué dans un conteneur.

WRL

- A Température de l'eau en sortie source (°C)
- B Température de l'eau en sortie application (°C)

WRL-E

- A Température de condensation (°C)
- B Température de l'eau en sortie application (°C)

Attention: Avec des températures d'eau produite ≤ à 4 °C, nous conseillons de prévoir un pourcentage de Glycol dans le circuit hydraulique afin d'éviter tout dommage à l'unité.

Différence entre l'entrée (Δtc) et la sortie du condenseur :

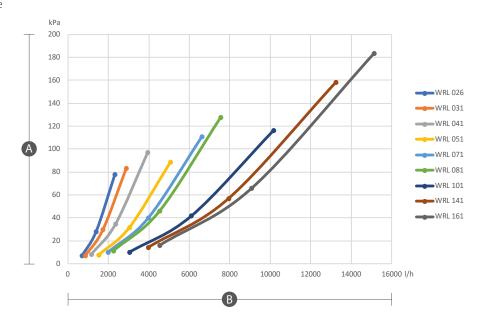
- min: 5° C.
- max: 22° C.

Différence entre l'entrée (Δte) et la sortie de l'évaporateur :

- min: 3° C.
- max: 10° C.

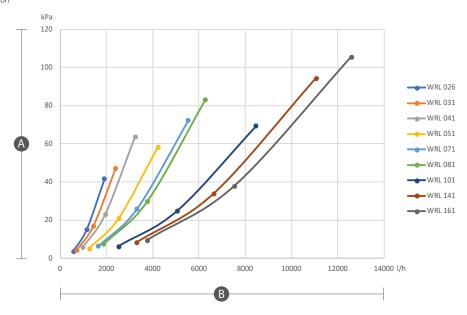
DONNÉES DU PROJET

Refroidissement		Côté haute pression	Côté basse pression
Pression maximale admissible	bar	42	25
Température maximale admissible	°C	120	50
Température minimale admissible	°C	-25	-25


26 23/05 – 5383512_06

13 PERTES DE CHARGE

Les graphiques suivants illustrent les valeurs des pertes de charge en kPa en fonction du débit en l/h.


FONCTIONNEMENT À FROID SANS KIT HYDRONIQUE

Côté source

- Pertes de charge (kPa)
- Dèbit d'eau (l/h)

Côté installation

- Pertes de charge (kPa)
- В Dèbit d'eau (l/h)

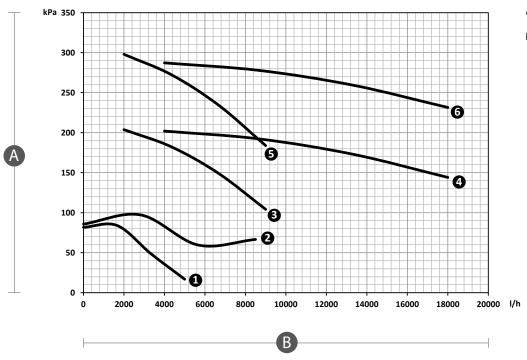
FONCTIONNEMENT À FROID AVEC LA VANNE MODULANTE À 2 VOIES

WRL	K - CÔTÉ GÉOTHERMIE	
026	2,634E-05	
031	1,950E-05	
041	1,330E-05	
051	4,361E-06	
071	3,223E-06	
081	2,837E-06	
101	1,319E-06	
141	1,044E-06	
161	9,230E-07	

Données 14511:2018

Les débits et pertes de charge aux échangeurs sont calculés : Eau côté application 12 °C/7 °C ; Eau côté source 30 °C/35 °C Pour des conditions de fonctionnement différentes de celles déclarées, se reporter au programme de sélection, disponible sur le site www.aermec.com

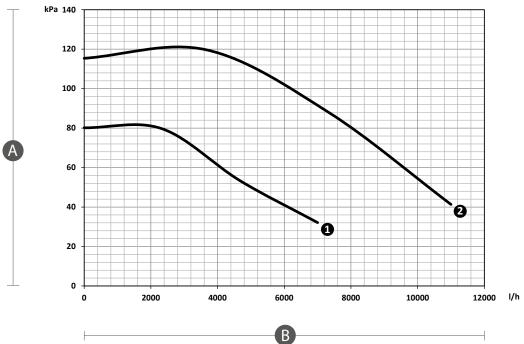
14 HAUTEURS MANOMÉTRIQUES POMPES


Les courbes représentent le champ de fonctionnement de chacune des pompes.

Si des points de fonctionnement sont choisis en dehors de l'intervalle des courbes de la hauteur manométrique, contacter le siège.

HAUTEURS MANOMÉTRIQUES DES POMPES CÔTÉ INSTALLATION ET CÔTÉ GÉOTHERMIE

Les pressions statiques utiles à l'installation doivent être calculées, en soustrayant à la pression statique utile de la pompe lue sur le présent graphique, les pertes de charge (Δp) de l'unité, que l'on peut calculer en utilisant les tableaux précédents.


- A Hauteurs manométriques pompes (kPa)
- B Dèbit d'eau (I/h)

			GROUPE DE POMPAGE							
N°	TAILLES	В	P	U	N	Q				
1	WRL026	•	•			•				
1	WRL031	•	•			•				
1	WRL041	•	•			•				
2	WRL051	•	•			•				
2	WRL071	•	•			•				
2	WRL081	•	•			•				
3	WRL100	•	•			•				
4	WRL141	•	•			•				
4	WRL161	•	•			•				
5	WRL100			•	•					
6	WRL141			•	•					
6	WRL161			•	•					

28 23/05 – 5383512_06

HAUTEURS MANOMÉTRIQUES DES POMPES DE MODULATION INVERTER

Les pressions statiques utiles à l'installation doivent être calculées, en soustrayant à la pression statique utile de la pompe lue sur le présent graphique, les pertes de charge (Δp) de l'unité, que l'on peut calculer en utilisant les tableaux précédents.

- A Hauteurs manométriques pompes (kPa)
- B Dèbit d'eau (I/h)

		GROUPE DE POMPAGE
N°	TAILLES	I
1	WRL026	•
1	WRL031	•
1	WRL041	•
2	WRL051	•
2	WRL071	•
2	WRL081	•
-	WRL100	indisponible
-	WRL141	indisponible
-	WRL161	indisponible
-	WRL100	indisponible
-	WRL141	indisponible
	WRI 161	indisponible

15 CONTENU D'EAU DANS L'INSTALLATION

CONTENU MINIMAL EN EAU DE L'INSTALLATION

Une quantité d'eau suffisante dans l'installation doit être assurée pour le bon fonctionnement de l'unité. Une quantité d'eau suffisante assure non seulement une bonne stabilité de la machine, mais évite également un nombre élevé de démarrages horaires du compresseur.

Pour la calculer, utiliser la formule suivante: Puissance frigorifique nominale de l'unité (kW) x valeur du tableau (l/kW) = Quantité minimum de l'installation (l).

Taille			026	031	041	051	071	081	101	141	161
Contenu d'eau minimum dans l'installation											
Contenance en eau minimale pour climatisation	°,A	I/kW	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Contenance en eau minimale pour process	°,A	I/kW	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0

Nota: le contenu d'eau auquel se réfèrent les tableaux coïncide avec la quantité d'eau effectivement utile pour l'inertie ; cette valeur ne coïncide pas nécessairement avec la totalité du contenu d'eau de l'installation et doit être calculée en fonction du schéma de l'installation et des modes de fonctionnement envisagés pour l'installation.

Vous trouverez ci-dessous un exemple indicatifs et non exhaustifs d'un cas possible.

Exemple: pour un groupe d'eau glacée ou une pompe à chaleur avec circuit primaire et secondaire, et où les pompes de zone du secondaire pourraient (même occasionnellement) être éteintes, le contenu d'eau du circuit primaire a la valeur du contenu d'eau utile pour le comptage.

En cas de doute, il est recommandé de consulter la documentation technique correspondante ou le service technico-commercial AERMEC.

ATTENTION II est conseillé de concevoir des installations ayant un contenu d'eau élevé (le tabl. indique les valeurs minimum conseillées), afin de limiter:

- Le nombre de démarrages des compresseurs
- La réduction de la température de l'eau pendant les cycles de dégivrage pendant la période hivernal pour les pompes à chaleur.

CONTENU MAXIMUM D'EAU DANS L'INSTALLATION

Les unités avec kit hydraulique monté sont équipés en standard d'un vase d'expansion étalonné à 1,5 bar, de la soupape de sûreté, du contrôleur de débit et du filtre à eau monté. Le contenu maximum du système hydraulique dépend de la capacité du vase d'expansion et de l'étalonnage de la soupape de sûreté.

Kit hydronique réservoir d'accumulation

Taille		026	031	041	051	071	081	101	141	161
Kit hydraulique										
Nombre ballon tampon	n°	1	1	1	1	1	1	1	1	1
Capacité ballon tampon	I	100	100	100	100	100	100	150	150	150
Soupape de sûreté	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Nombre vase d'expansion	n°	1	1	1	1	1	1	1	1	1
Capacité vase d'expansion		8	8	8	8	8	8	8	8	8

Kit hydraulique côté du système

Taille		026	031	041	051	071	081	101	141	161
KIT HYDRAULIQUE INTÉGRÉ CÔTÉ DU S	SYSTÈME: N									
Kit hydraulique côté du système										
Filtre à eau	n°	1	1	1	1	1	1	1	1	1
Soupape de sûreté	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Nombre vase d'expansion	n°	1	1	1	1	1	1	1	1	1
Capacité vase d'expansion	I	2	2	2	2	2	2	8	8	8
Débit minimum d'eau de la pompe	l/h	-	-	-	-	-	-	2000	4000	4000
Débit maximum d'eau de la pompe	l/h	-	-	-	-	-	-	9000	18000	18000
Puissance absorbée	W	-	-	-	-	-	-	530	740	740
Courant absorbé	A	-	-	-	-	-	-	1,0	1,4	1,4
Nombre de pôles	n°	2	2	2	2	2	2	2	2	2

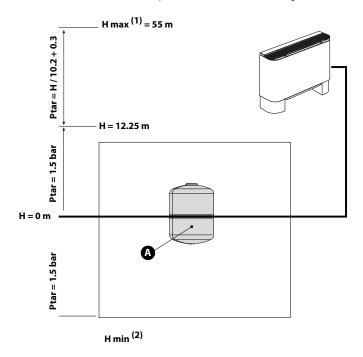
Taille		026	031	041	051	071	081	101	141	161
KIT HYDRAULIQUE INTÉGRÉ CÔTÉ DU	SYSTÈME: P									
Kit hydraulique côté du système										
Filtre à eau	n°	1	1	1	1	1	1	1	1	1
Soupape de sûreté	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Nombre vase d'expansion	n°	1	1	1	1	1	1	1	1	1
Capacité vase d'expansion		2	2	2	2	2	2	8	8	8
Débit minimum d'eau de la pompe	l/h	0	0	0	0	0	0	2000	4000	4000
Débit maximum d'eau de la pompe	l/h	5000	5000	5000	8500	8500	8500	9000	18000	18000
Puissance absorbée	W	70	70	70	120	120	120	370	450	450
Courant absorbé	A	0,5	0,5	0,5	0,8	0,8	0,8	0,8	0,8	0,8
Nombre de pôles	n°	2	2	2	2	2	2	2	2	2

Kit hydraulique côté source

Taille		026	031	041	051	071	081	101	141	161
KIT HYDRAULIQUE INTÉGRÉ CÔTÉ SOURCE: B										
Kit hydraulique côté source										
Filtre à eau	n°	1	1	1	1	1	1	1	1	1
Soupape de sûreté	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Nombre vase d'expansion	n°	1	1	1	1	1	1	1	1	1
Capacité vase d'expansion	ı	2	2	2	2	2	2	8	8	8
Débit minimum d'eau de la pompe	l/h	0	0	0	0	0	0	2000	4000	4000

30 23/05 – 5383512_06

Taille		026	031	041	051	071	081	101	141	161
Débit maximum d'eau de la pompe	l/h	5000	5000	5000	8500	8500	8500	9000	18000	18000
Puissance absorbée	W	70	70	70	120	120	120	370	450	450
Courant absorbé	Α	0,5	0,5	0,5	0,8	0,8	0,8	0,8	0,8	0,8
Nombre de pôles	n°	2	2	2	2	2	2	2	2	2
Taille		026	031	041	051	071	081	101	141	161
KIT HYDRAULIQUE INTÉGRÉ CÔTÉ SOURCE: I										
Kit hydraulique côté source										
Filtre à eau	n°	1	1	1	1	1	1	1	1	1
Soupape de sûreté	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Nombre vase d'expansion	n°	1	1	1	1	1	1	1	1	1
Capacité vase d'expansion		2	2	2	2	2	2	8	8	8
Débit minimum d'eau de la pompe	l/h	0	0	0	0	0	0	-	-	-
Débit maximum d'eau de la pompe	l/h	7000	7000	7000	11000	11000	11000	-	-	-
Puissance absorbée	W	110	110	110	160	160	160	-	-	-
Courant absorbé	А	0,9	0,9	0,9	0,7	0,7	0,7	-	-	-
Nombre de pôles	n°	2	2	2	2	2	2	2	2	2
Taille		026	031	041	051	071	081	101	141	161
KIT HYDRAULIQUE INTÉGRÉ CÔTÉ SOURCE: U										
Kit hydraulique côté source										
Filtre à eau	n°	1	1	1	1	1	1	1	1	1
Soupape de sûreté	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Nombre vase d'expansion	n°	1	1	1	1	1	1	1	1	1
Capacité vase d'expansion		2	2	2	2	2	2	8	8	8
Débit minimum d'eau de la pompe	l/h	-	-	-	-	-	-	2000	4000	4000
Débit maximum d'eau de la pompe	l/h	-	-	-	-	-	-	9000	18000	18000
Puissance absorbée	W	-	-	-	-	-	-	530	740	740
Courant absorbé	A	-	-	-	-	-	-	1,0	1,4	1,4
Nombre de pôles	n°	2	2	2	2	2	2	2	2	2


16 RÉGLAGE DU VASE D'EXPANSION

La valeur standard de pression de précharge du vase d'expansion est de 1,5 bar, la valeur maximum de 6 bars.

Le calibrage du vase doit être fait en fonction de la dénivellation maximum (H) de l'utilisateur (voir figure) selon la formule: p (calibrage) [bar] = H [m] / 10,2 + 0,3.

Par exemple si la valeur de dénivellation H est égale à 20m, la valeur de calibrage du vase sera de 2,3 bars.

Si la valeur de calibrage obtenu à partir du calcul s'avérait inférieure à 1,5 bar (c'est-à-dire pour H < 12,25), maintenir le calibrage standard.

Légende :

- A Vase d'expansion
- 1 Vérifier que l'utilisateur le plus haut ne dépasse pas 55 mètres de dénivellation
- 2 Vérifier que l'utilisateur le plus bas puisse supporter la pression globale qui agit à cet endroit

17 FACTEURS DE CORRECTION

Les performances fournies par les données techniques se réfèrent aux conditions de tuyaux propres avec facteur d'incrustation = 1.Pour des valeurs différentes du facteur d'incrustation, multiplier les données du tableau de prestation par les coefficients indiqués.

ATTENTION: Les rendements sont calculés avec le % de glycol et les températures indiquées dans le tableau, pour des rendements différents, consulter Magellano.

FACTEURS CORRECTIFS POUR TEMPÉRATURES MOYENNES DE L'EAU DIFFÉRENTES DU NOMINAL

Les pertes de charge sont calculées avec une température moyenne de l'eau de 10 °C (fonctionnement à froid), 43 °C (en fonctionnement à chaud)

							Éch	angeur o	ôté syst	ème						
				Mode	efroidis	sement				Fon	ctionner	nent à ch	naud ou	récupéra	tion	
Températures moyennes de l'eau	(°C)	5	10	15	20	30	40	50	23	28	33	38	43	48	53	58
Facteur correctif		1,02	1,00	0,98	0,97	0,95	0,93	0,91	1,04	1,03	1,02	1,01	1,00	0,99	0,98	0,97

SALISSEMENT: FACTEURS DE CORRECTION POUR L'INCRUSTATION [K*M²]/[W]

	0,0	0,00005	0,0001	0,0002
Facteurs de correction puissance frigorifique	1,0	1	0.98	0.94
Facteurs de correction puissance absorbée	1,0	1	0.98	0.95

GLYCOL PROPYLENIC

Mode refroidissement

	FACTEURS DE COI	RRECTION AVEC SO	LUTION DE GLY	COL PROPYLE	NIC - FONCTION	NEMENT A FR	OID				
Freezing Point	°C	0	-3,43	-5,30	-7,44	-9,98	-13,08	-16,86	-21,47	-27,04	-33,72
Pourcentage de glycol propylenic	%	0	10	15	20	25	30	35	40	45	50
Qwc	=	1,000	1,007	1,006	1,007	1,010	1,015	1,022	1,032	1,044	1,058
Pc	-	1,000	0,985	0,978	0,970	0,963	0,955	0,947	0,939	0,932	0,924
Pa	=	1,000	0,996	0,994	0,992	0,990	0,988	0,986	0,984	0,982	0,980
Δρ	_	1,000	1,082	1,102	1,143	1,201	1,271	1,351	1,435	1,520	1,602

Mode en chauffage

	FACTEURS DE CORR	RECTION AVEC SOL	LUTION DE GLY	COL PROPYLEN	IIC - FONCTION	NEMENT A CHA	AUDE				
Freezing Point	$^{\circ}$	0	-3,43	-5,30	-7,44	-9,98	-13,08	-16,86	-21,47	-27,04	-33,72
Pourcentage de glycol propylenic	%	0	10	15	20	25	30	35	40	45	50
Qwh	=	1,000	1,008	1,014	1,021	1,030	1,042	1,055	1,071	1,090	1,112
Ph	-	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Pa	-	1,000	1,003	1,004	1,005	1,007	1,009	1,011	1,014	1,018	1,023
Δρ	_	1,000	1,050	1,077	1,111	1,153	1,202	1,258	1,321	1,390	1,467

GLYCOL D'ÉTHYLÈNE

Mode refroidissement

	FACTEURS DE CO	ORRECTION AVEC S	OLUTION DE GI	LYCOL D'ÉTHYL	ÈNE - FONCTIO	NNEMENT A FR	OID						
Freezing point	eezing point °C 0 –3,63 –6,10 –8,93 –12,11 –15,74 –19,94 –24,79 –30,44 –37,1												
Pourcentage de glycol d'éthylène	%	0	10	15	20	25	30	35	40	45	50		
Qwc	-	1,000	1,033	1,040	1,049	1,060	1,072	1,086	1,102	1,120	1,141		
Pc	_	1,000	0,990	0,985	0,980	0,975	0,970	0,965	0,960	0,955	0,950		
Pa	-	1,000	0,996	0,994	0,992	0,990	0,988	0,986	0,984	0,982	0,980		
Δρ	_	1,000	1,109	1,157	1,209	1,268	1,336	1,414	1,505	1,609	1,728		

Mode en chauffage

	FACTEURS DE CORR	ECTION AVEC SOI	UTION DE GLY	COL PROPYLEN	IIC - FONCTION	NEMENT A CHA	UDE				
Freezing Point	°C	0	-3,63	-6,10	-8,93	-12,11	-15,74	-19,94	-24,79	-30,44	-37,10
Pourcentage de glycol d'éthylène	%	0	10	15	20	25	30	35	40	45	50
Qwh	=	1,000	1,027	1,038	1,050	1,063	1,078	1,095	1,114	1,135	1,158
Ph	=	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Pa	-	1,000	1,002	1,003	1,004	1,005	1,007	1,008	1,010	1,012	1,015
Δρ	-	1,000	1,087	1,128	1,175	1,227	1,286	1,.353	1,428	1,514	1,610

Facteur de correction débit d'eau (température moyenne d'eau de 9,5°C)

Qwh Pc

Facteur de correction débit d'eau (température moyenne d'eau de 42,5 °C) Facteur de correction de la Puissance frigorifique Facteur de correction de la Puissance thermique Ph Facteur de correction de la Puissance absorbée Facteur de correction Perte de charge

18 DONNÉES SONORES

Taille			026	031	041	051	071	081	101	141	161
Données sonores calculées en mode refro	oidissement (1)										
Niveau de puissance sonore	°,A	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
Niveau de pression sonore (10 m)	۰	dB(A)	24,3	25,8	26,3	27,7	28,7	29,2	30,6	31,6	32,1
Niveau de pression sonore (10 m)	Α	dB(A)	24,1	25,6	26,1	27,6	28,6	29,1	30,5	31,5	32,0
Niveau de pression sonore (1 m)	°,A	dB(A)	41,1	42,6	43,1	44,2	45,2	45,7	46,7	47,7	48,2
Puissance sonore par fréquence centrale	de bande [dB](A)				,						_
125 Hz	°,A	dB(A)	66,5	67,9	68,2	69,6	70,6	70,9	72,8	73,6	73,9
250 Hz	°,A	dB(A)	58,1	59,7	60,2	61,6	62,8	63,0	65,0	65,8	66,0
500 Hz	°,A	dB(A)	51,5	53,1	53,7	55,3	56,2	56,3	58,2	59,2	59,3
1000 Hz	°,A	dB(A)	46,3	47,6	48,2	49,9	50,9	51,1	52,6	53,9	54,1
2000 Hz	°,A	dB(A)	44,9	46,1	46,6	48,8	49,8	50,0	51,6	52,8	53,0
4000 Hz	°,A	dB(A)	36,7	38,1	38,9	41,3	42,7	42,9	44,3	45,7	45,9
8000 Hz	°,A	dB(A)	33,2	34,5	35,1	37,3	38,6	38,9	39,5	41,6	41,9

⁽¹⁾ Puissance acoustique: calculée sur la base des mesures effectuées en accord avec la norme UNI EN ISO 9614-2, conformément aux conditions requises de la certification Eurovent.; Pression sonore mesurée en champ libre, à 10 m de la surface externe de l'unité , (conformément à la norme UNI EN ISO 3744)

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. +39 0442 633 111 - Fax +39 0442 93577
marketing@aermec.com - www.aermec.com

23/05 - 5383512_06