

ANK 020-150

Manuel d'installation

Puissance frigorifique 6,8 ÷ 29,7 kW

Puissance thermique 7,9 ÷ 33,3 kW

Cher client,

Nous vous remercions de vouloir en savoir plus sur un produit Aermec. Il est le résultat de plusieurs années d'expériences et d'études de conception particulières, il a été construit avec des matériaux de première sélection à l'aide de technologies très avancées.

Le manuel que vous êtes sur le point de lire a pour but de présenter le produit et de vous aider à choisir l'unité qui répond le mieux aux besoins de votre système.

Cependant, nous vous rappelons que pour une sélection plus précise, vous pouvez également utiliser l'aide du programme de sélection Magellano, disponible sur notre site web.

Aermec est toujours attentive aux changements continus du marché et de ses réglementations et se réserve la faculté d'apporter, à tout instant, toute modification retenue nécessaire à l'amélioration du produit, avec modification éventuelle des données techniques relatives.

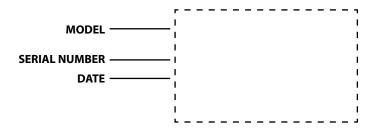
Avec nos remerciements,

Aermec S.p.A.

CERTIFICATIONS

CERTIFICATIONS DE L'ENTREPRISE

CERTIFICATIONS DE SÉCURITÉ



Cette étiquette indique que le produit ne doit pas être jetés avec les autres déchets ménagers dans toute l'UE. Pour éviter toute atteinte à l'environnement ou la santé humaine causés par une mauvaise élimination des déchets d'équipements électriques et électroniques (DEEE), se il vous plaît retourner l'appareil à l'aide de systèmes de collecte appropriés, ou communiquer avec le détaillant où le produit a été acheté . Pour plus d'informations se il vous plaît communiquer avec l'autorité locale appropriée. Déversement illégal du produit par l'utilisateur entraîne l'application de sanctions administratives prévues par la loi.

Toutes les spécifications sont soumises à modifications sans préavis. Même si tous les efforts ont été faits pour assurer la précision, Aermec n'assume aucune responsabilité pour d'éventuelles erreurs ou omissions.

ANK 020-085

Nous, Signataires du présent acte, déclarons sous notre responsabilité exclusive que le groupe cité à l'objet défini de la façon suivante:

Nom: ANK

Type: Pompe à chaleur réversible à condensation par air

Modèles: ANK

auquel cette déclaration se réfère, est conforme à toutes les dispositions relatives des directives suivantes:

Directive basse tension: LVD 2014/35/UE

Directive Erp 2009/125/CE

Directive RoHS relative à la limitation de l'utilisation de certaines substances dangereuses dans les EEE: 2011/65/UE

Directive PED des équipements sous pression: 2014/68/UE (module A) Directive sur la compatibilité électromagnétique EMCD: 2014/30/UE

L'objet de la déclaration reportée ci-dessus est conforme aux normes d'harmonisation relatives de l'Union:

CEI EN 60335-2-40 / A13: 2012
CEI EN 60335-2-40:2005
UNI EN 378-2: 2017
CEI EN 60335-2-40 / A2: 2009
UNI EN 12735-1: 2020
CEI EN IEC 61000-6-1: 2019
CEI EN 60335-2-40/A1: 2007
CEI EN IEC 61000-6-3: 2021
CEI EN IEC 55014-1: 2021
CEI EN IEC 55014-2: 2021

La déclaration de conformité présente est délivrée sous la responsabilité exclusive du fabricant .

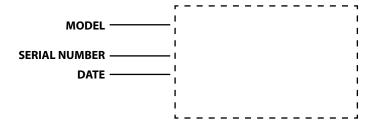
La personne autorisée à constituer le dossier technique est Luca Martin.via Roma 996, 37040 Bevilacqua (VR) Italy.

L'unité est conforme aux données de projet reportées dans le dossier technique Définition de l'Ensemble, est conforme à la directive 2014/68/UE et satisfait la procédure de Garantie Totale (module H) avec certificat n. 06/270-QT33664 Rév.16 émis par l'organisme notifié n. 1131 CEC via Pisacane 46 Legnano (MI) - Italie.

La liste des composants critiques correspondants au numéro d'usine mentionné ci-dessus, conformément aux dispositions de la Directive 2014/68/UE, est fournie avec la présente Déclaration de Conformité (doc. « Liste des composants pour la Déclaration de Conformité »).

Nous déclarons également que, lors de la mise sur le marché européen de cet appareil préchargé par Aermec S.p.A. (qui importe ou produit dans l'Union), les hydrofluorocarbures, contenus dans l'appareil en question, sont comptabilisés dans le système de quotas de l'Union visé au Chapitre IV du règlement UE n. 517/2014 étant donné qu'ils ont été mis sur le marché par un producteur ou importateur d'hydrofluorocarbures auxquels s'applique l'article 15 du règlement UE n. 517/2014.

Signé au nom et pour le compte de : AERMEC S.p.A.


Bevilacqua (VR),

Directeur Commercial Luigi Zucchi

King : Suchi

ANK 020-085

We, the undersigned, hereby declare under our own responsibility that the assembly in question, defined as follows:

Name: ANK

Type: Reversible air/water heat pump

Models: ANK

to which this declaration refers, complies with all the provisions related to the following directives:

S.I. 2016 No.1101 S.I. 2008 No.1597 S.I. 2016 No.1091 S.I. 2016 No.1105

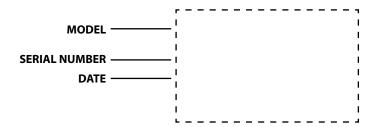
S.I. 2012 No.3032 S.I. 2010 No.2617

The above-mentioned declaration complies with the harmonised European standards:

EN 60335-2-40: 2003 EN 60335-2-40/A1: 2006 EN 60335-2-40/A13: 2012 EN 1EC 61000-6-1: 2019 EN 1EC 61000-6-3: 2021 EN 1EC 55014-1: 2021 EN 1EC 55014-2: 2021 EN 378-2: 2016 EN 12735-1: 2020

This declaration of conformity has been released under the exclusive responsibility of the manufacturer.

Signed for and on behalf of: AERMEC S.p.A.


Bevilacqua (VR),

Marketing manager Luigi Zucchi

Ling: Suchi

ANK 100-150

Nous, Signataires du présent acte, déclarons sous notre responsabilité exclusive que le groupe cité à l'objet défini de la façon suivante:

Nom: ANK

Type: Pompe à chaleur réversible à condensation par air

Modèles: ANK

auquel cette déclaration se réfère, est conforme à toutes les dispositions relatives des directives suivantes:

Directive Machines: 2006/42/CE Directive Erp 2009/125/CE

Directive RoHS relative à la limitation de l'utilisation de certaines substances dangereuses dans les EEE: 2011/65/UE

Directive PED en matière d'équipements sous pression : 2014/68/UE Directive sur la compatibilité électromagnétique EMCD: 2014/30/UE

L'objet de la déclaration reportée ci-dessus est conforme aux normes d'harmonisation relatives de l'Union:

UNI EN ISO 12100: 2010 UNI EN 378-2: 2017 UNI EN 12735-1: 2020 CEI EN 60204-1: 2018 CEI EN IEC 61000-6-1: 2019 CEI EN IEC 61000-6-3: 2021

La déclaration de conformité présente est délivrée sous la responsabilité exclusive du fabricant .

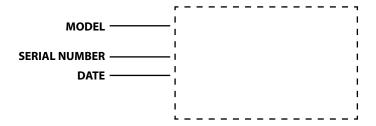
La personne autorisée à constituer le dossier technique est Luca Martin.via Roma 996, 37040 Bevilacqua (VR) Italy.

L'unité est conforme aux données de projet reportées dans le dossier technique Définition de l'Ensemble, est conforme à la directive 2014/68/UE et satisfait la procédure de Garantie Totale (module H) avec certificat n. 06/270-QT33664 Rév.16 émis par l'organisme notifié n. 1131 CEC via Pisacane 46 Legnano (MI) - Italie.

La liste des composants critiques correspondants au numéro d'usine mentionné ci-dessus, conformément aux dispositions de la Directive 2014/68/UE, est fournie avec la présente Déclaration de Conformité (doc. « Liste des composants pour la Déclaration de Conformité »).

Nous déclarons également que, lors de la mise sur le marché européen de cet appareil préchargé par Aermec S.p.A. (qui importe ou produit dans l'Union), les hydrofluorocarbures, contenus dans l'appareil en question, sont comptabilisés dans le système de quotas de l'Union visé au Chapitre IV du règlement UE n. 517/2014 étant donné qu'ils ont été mis sur le marché par un producteur ou importateur d'hydrofluorocarbures auxquels s'applique l'article 15 du règlement UE n. 517/2014.

Signé au nom et pour le compte de : AERMEC S.p.A.


Bevilacqua (VR),

Directeur Commercial Luigi Zucchi

Ling: Suchi

ANK 100-150

We, the undersigned, hereby declare under our own responsibility that the assembly in question, defined as follows:

Name: ANK

Type: Reversible air/water heat pump

Models: ANK

to which this declaration refers, complies with all the provisions related to the following directives:

S.I. 2008 No.1597 S.I. 2016 No.1091 S.I. 2016 No.1105 S.I. 2012 No.3032 S.I. 2010 No.2617

The above-mentioned declaration complies with the harmonised European standards:

EN IEC 61000-6-1: 2019 EN IEC 61000-6-3: 2021 EN 378-2: 2016 EN 12735-1: 2020 EN 60204-1: 2018 EN ISO 12100: 2010

This declaration of conformity has been released under the exclusive responsibility of the manufacturer.

Signed for and on behalf of: AERMEC S.p.A.

Bevilacqua (VR),

Marketing manager Luigi Zucchi

Lung: Suchi

TABLE DES MATIÈRES

1	Introduction	10
2	Mises en garde générales	11
	Précautions concernant le circuit hydraulique	11
	Précautions concernant le circuit électrique	11
	Précautions concernant le circuit frigorifique	11
	Préventions	12
3	Critères de choix des échangeurs en fonction de l'emplacement d'installation de l'unité	13
	Régions côtières/marines	13
	Milieux industriels	13
	Combinaison de milieux marins/industriels	13
	Régions urbaines	13
	Zones rurales	13
	Précautions supplémentaires	13
4	Description de l'unité	14
	Caractéristiques	14
	Dispositifs de sécurité et de réglage	14
5	Limites de fonctionnement	15
	Mode refroidissement	15
	Mode en chauffage	16
6	Schémas frigorifique de principe	17
7	Installation	18
	Réception du produit	18
	Manutention et déballage	18
	Levage avec palan ou grue	18
	Manutention avec chariot-élévateur	19
	Stockage	19
	Lieu d'installation	19
	Positionnement	19
8	Dimensions et poids	20
Esp	paces techniques minimum	20
9	Tables des dimensions	21
10	POIDS ET CENTRES DE GRAVITÉ	

Pos	sition des trous des éléments antivibratoires	24
11	Raccordements hydrauliques	25
	Connexions	25
	Caractéristiques de l'eau	25
	Évacuation de l'installation	26
	Protection antigel	26
12	Schémas hydrauliques de principe	27
	Version °	27
	Version A	28
	Version P	29
	Exemple d'installation : chauffage/refroidissement + eau chaude sanitaire	30
13	Position des raccords hydrauliques	31
	ANK 020 H - HP	31
	ANK 030 - 040 - 045 - 050 - 085 - H - HP	31
	ANK 020 HA	31
	ANK 030 - 040 - 045 - 050 - 085 HA	32
	ANK 100 - 150 H - HP - HA	32
14	Branchement électrique de puissance au secteur	33
15	Raccordements électriques	34
16	Données électriques	35
17	Première mise en marche - Mises en garde	36
	Démarrage	36
18	Entretien	37
	Précautions et préventions à observer lors de l'entretien	37
	Maintenance ordinaire et extraordinairel	38
	Mise hors service et démantèlement des composants de la machine	38
	Microcanaux nettoyage batterie	38
19	Liste des ingrédients périodiques conseillés	
	Interventions générales	39
	Interventions sur les circuits	39

1 INTRODUCTION

L'unité que vous avez achetée est une machine complexe. Pendant l'installation, le fonctionnement, l'entretien ou la réparation, les personnes et les biens peuvent être exposés à des risques causés par certaines conditions ou certains composants tels que, mais sans s'y limiter, le fluide frigorigène, les huiles, les pièces en mouvement, les pressions, les sources de chaleur, la tension électrique.

Ce manuel fournit des informations sur les fonctions et les procédures standard de toutes les unités de la série et constitue un document d'appui important pour le personnel qualifié, mais ne peut remplacer ce dernier.

Une installation correcte de l'unité doit inclure le respect de toutes les instructions données dans ce manuel, de toutes les réglementations et normes en vigueur (EN 378, normes nationales ou locales) et dans tous les cas une analyse de risque supplémentaire par le concepteur de l'installation.

Avant de procéder à l'installation et à la mise en service de l'unité, lire attentivement ce manuel avec toutes ses annotations mises en évidence par les symboles suivants indiquant différents niveaux de danger ou des situations potentiellement dangereuses afin d'éviter tout dysfonctionnement ou dommage physique aux biens et aux personnes :

DANGER indique une situation de danger imminent : en cas de non-respect, elle peut causer la mort ou des blessures graves, il est obligatoire de suivre les mesures indiquées.

AVERTISSEMENTS indique une situation potentiellement dangereuse : si elle n'est pas évitée, elle pourrait entraîner des blessures graves ou la mort. Faire extrêmement attention durant le travail

ATTENTION indique une situation potentiellement dangereuse qui: si elle n'est pas évitée, peut entraîner des blessures ou des dommages matériels mineurs ou modérés

INFORMATION Noter qu'une situation potentiellement dangereuse peut se produire et, si elle n'est pas évitée, elle peut causer des dommages aux biens

INTERDIT: opérations qui ne doivent absolument pas être effectuées.

IMPORTANT Autres informations sur l'utilisation du produit

Le manuel contient des instructions importantes pour la mise en service de l'unité et des instructions fondamentales pour éviter les blessures corporelles ou les dommages à la machine pendant son fonctionnement. Enfin, des instructions d'entretien sont fournies pour assurer un fonctionnement sans faille.

L'unité doit être installée par des techniciens spécialisés conformément aux lois applicables dans le pays d'installation. Le démarrage de l'unité doit également être effectué par un personnel autorisé et formé et toutes les activités doivent être réalisées conformément et dans le respect total des normes et des lois locales et tous les travaux sur l'unité doivent être effectués de manière professionnelle.

Bien que notre unité soit équipée de nombreux dispositifs de sécurité et de protection et qu'elle ait été testé en usine, il faut faire preuve de prudence lors des interventions sur cette dernière, en prenant des précautions contre les risques résiduels.

L'unité est munie des étiquettes de sécurité: suivantes pour indiquer les risques potentiels (apposées sur ou à proximité des parties potentiellement dangereuses).

Attenzione Alta temperatura

Attenzione Tensione elettrica

Attenzione
Parti in movimento

Attenzione Parti taglienti

Attenzione Rischio biologico

2 MISES EN GARDE GÉNÉRALES

ATTENTION:

- La machine doit être transportée conformément aux normes en vigueur dans le pays de destination, en tenant compte des caractéristiques des fluides contenus et de leur caractérisation. Un transport inapproprié peut endommager la machine et générer des fuites de fluide frigorigène. Avant le premier démarrage, une détection des fuites doit être effectuée avec les équipements de protection individuelle appropriés;
- À la réception du produit, s'assurer de l'intégrité et de l'exhaustivité de la fourniture et, en cas de non-conformité avec ce qui a été commandé, contacter l'agence qui a vendu l'équipement;
- Le produit doit être destiné à l'utilisation prévue par Aermec pour laquelle il a été expressément réalisé. Aermec n'a aucune responsabilité contractuelle ou extracontractuelle pour des dommages causés à des personnes, des animaux ou des objets, par erreurs d'installation, de réglage et d'entretien ou dus à des utilisations inappropriées;
- Lors des opérations d'installation et/ou d'entretien qui, nous le rappelons, doivent être effectuées par du personnel qualifié et formé, il est obligatoire de porter des équipements de protection (gants, protection des yeux, casque...) adaptés aux opérations à effectuer; ne pas porter de vêtements ou d'accessoires qui peuvent se coincer ou être aspirés par les flux d'air; attacher les cheveux avant d'accéder à l'intérieur de l'unité, Aermec décline toute responsabilité en cas de non-respect des règles de sécurité et de prévention des accidents en vigueur;

de protection individuelle (EPI)		Opérations	
	Manutention	Installation et/ou entretien	Soudage ou brasage
Gants de protection, casque, lunettes, chaussures de protection, vêtements de protection.	•		•
Casque antibruit			

(1) Il est recommandé de suivre les instructions de la norme EN 378-3

- Respecter les lois en vigueur dans le pays où l'unité est installée, concernant l'utilisation et l'élimination des emballages, les produits de nettoyage et d'entretien, et la gestion de la fin de vie de l'unité;
- Les travaux de réparation ou d'entretien doivent être effectués par le service technique Aermec. Ne pas modifier ou altérer l'unité pour éviter de créer des situations de danger. Le fabricant de l'appareil ne sera pas responsable des dommages éventuellement provoqués:
- En cas de fonctionnement anormal, ou de fuite de liquides, mettre l'interrupteur général du système en position éteinte et fermer les robinets d'arrêt. Appeler immédiatement le service technique Aermec local et ne pas intervenir personnellement sur l'appareil;
- L'unité doit être installée dans des structures protégées contre les rejets atmosphériques, conformément aux lois et aux normes techniques applicables;
- Les appareils contiennent du fluide frigorigène: agir avec précaution afin de ne pas endommager le circuit de gaz et la batterie à ailettes;
- Conformément à la norme 517/2014 de l'UE sur certains gaz à effet de serre fluorés, il est obligatoire d'indiquer la quantité totale de fluide frigorigène dans le système installé. Les données se trouvent sur la plaque signalétique de l'unité;
- Cette unité contient des gaz à effet de serre fluorés du Protocole de Kyoto. Les opérations d'entretien et d'élimination doivent être effectuées seulement par du personnel qualifié;
- Ce manuel fait partie intégrante de l'unité et doit donc être conservé avec soin et doit toujours l'accompagner même en cas de cession à un autre propriétaire ou utilisateur ou de transfert vers une autre installation. En cas de dommage ou de perte, il est possible d'en télécharger une copie à partir de notre site www.aermec.com
- L'évaluation globale du risque d'incendie sur le lieu d'installation (par exemple, le calcul de la charge d'incendie) est de la responsabilité de l'utilisateur.
- Effectuer les raccordements des circuits à l'unité en suivant les indications reportées sur le présent manuel.

IL EST INTERDIT DE :

- Il est interdit de marcher sur les machines et d'y appuyer d'autres corps. Aucune partie des unités ne doit être utilisée comme une passerelle ou un support pour des objets ou des personnes. Vérifier et réparer périodiquement ou, si nécessaire, remplacer tout composant ou tuyauterie présentant des signes de détérioration. Utiliser une plate-forme ou un échafaudage pour intervenir à des niveaux plus élevés;
- Enlever les protections des éléments mobiles pendant que l'unité est en marche ;

- Toucher les pièces en mouvement, de s'interposer entre ces dernières ou introduire des objets pointus à travers les grilles.
- Toute intervention technique ou de nettoyage avant d'avoir débranché l'appareil du réseau d'alimentation électrique en positionnant l'interrupteur général de l'installation et l'interrupteur principal de l'appareil sur « ÉTEINT ».
- Modifier les dispositifs de sécurité ou de réglage. Le remplacement des dispositifs doit être effectué par le Service d'Assistance Technique Aermec, en utilisant exclusivement des composants d'origine.
- Tirer, détacher, tordre les câbles électriques qui sortent de l'appareil, même si ce dernier est débranché du réseau d'alimentation électrique;
- Disperser dans l'environnement et de laisser à la portée des enfants : le matériau d'emballage car il peut être une source de danger potentiel. Il doit donc être éliminé conformément à la législation en vigueur.

PRÉCAUTIONS CONCERNANT LE CIRCUIT HYDRAULIQUE

Effectuer les raccordements des circuits à l'unité en suivant les indications reportées sur le présent manuel:

- Il est obligatoire d'installer un filtre à eau et un contrôleur de débit sur les échangeurs, sous peine d'annulation de la garantie;
- 2. Ne pas plier ou heurter les tuyauteries contenant des fluides sous pression. Ne pas dépasser la pression maximale admissible (PS) du circuit hydraulique de l'unité;
- 3. Avant d'enlever des éléments le long des circuits hydriques sous pression, intercepter le morceau de tuyau concerné et évacuer le fluide progressivement jusqu'à équilibrer la pression à celle atmosphérique.
- 4. Même lorsque l'unité est éteinte, empêcher que les fluides en contact avec les échangeurs de chaleur ne dépassent les limites de température indiquées dans la documentation ou qu'ils ne gèlent;
- 5. Ne pas envoyer dans les échangeurs de chaleur des fluides autres que l'eau ou ses mélanges avec de l'éthylène/propylène glycol à des concentrations supérieures à celles indiquées dans la documentation technique :

En l'absence de glycol, la machine doit être alimentée pour permettre le fonctionnement des résistances (si présentes) et des pompes (si présentes) pour éviter le gel et, donc, de provoquer des dommages aux composants du circuit hydraulique.

L'opération de flushing du circuit hydraulique (nettoyage du circuit hydraulique) de l'installation doit être effectuée en excluant le circuit hydraulique du refroidisseur. Vérifier de toute façon que l'eau n'est pas entrée dans le circuit du refroidisseur en veillant à ouvrir les évacuations présentes dans le circuit hydraulique du refroidisseur. L'eau éventuellement accumulée dans le circuit hydraulique du refroidisseur risque de provoquer le gel/endommager les composants.

PRÉCAUTIONS CONCERNANT LE CIRCUIT ÉLECTRIQUE

- Effectuer les raccordements des circuits à l'unité en suivant les indications reportées sur le présent manuel.
- Ne pas utiliser de câbles dont la section est inadaptée ou des raccordements volants pour des périodes de temps limitées ni pour des urgences;
- 3. Vérifier que la mise à la terre de l'unité soit correcte avant de la mettre enmarche ;
- Débrancher l'unité du réseau au moyen du sectionneur externe avant d'ouvrir le tableau électrique.
- 5. En cas d'unité avec des condenseurs de rephasage, attendre 3 minutes à partir du moment où l'alimentation électrique a été coupée à l'unité avant d'accéder à l'intérieur du tableau électrique;
- 6. Si l'unité est équipée de composants de type inverter intégrés, débrancher l'alimentation électrique et attendre au moins 15 minutes avant d'y accéder pour l'entretien : les composants internes restent sous tension pendant cette période, ce qui crée un risque d'électrocution :
- Les dispositifs de sécurité doivent être maintenus en état d'efficience et vérifiés périodiquement comme prescrit par les normes en vigueur;

PRÉCAUTIONS CONCERNANT LE CIRCUIT FRIGORIFIQUE

Informations importantes sur le réfrigérant utilisé :

Cette unité contient des gaz à effet de serre fluorés du Protocole de Kyoto. Les opérations d'entretien et d'élimination doivent être effectuées seulement par du personnel qualifié.

Type de fluide: R410A

Global Warming Potential (GWP): 2088

 L'évaluation globale du risque d'incendie sur le lieu d'installation (par exemple, le calcul de la charge d'incendie) est de la responsabilité de l'utilisateur;

- Tenir compte des risques, des mesures, des conseils et des recommandations figurant dans la fiche technique de sécurité du fluide frigorigène;
- Pendant toute la durée de vie de l'unité (transport/ stockage / installation / maintenance), fournir une ventilation adéquate et ne pas la placer ou la stocker dans des espaces confinés;
- 4. Garder des extincteurs adaptés à l'extinction des incendies sur les équipements électriques et adaptés à l'huile de lubrification des compresseurs et au fluide frigorigène à proximité de la machine;
- 5. L'unité contient du fluide frigorigène sous pression : aucune opération ne doit être effectuée sur les équipements sous pression, sauf lors de l'entretien qui, nous le rappelons, doit être effectuée par un personnel compétent et qualifié;
- 6. N'effectuer les brasages ou les soudures que sur la tuyauterie vide et propre de tout résidu d'huile de lubrification ; ne pas approcher de flammes ou d'autres sources de chaleur de la tuyauterie contenant du fluide réfrigérant.
- 7. Ne pas travailler avec des flammes nues à proximité de l'unité;
- Afin d'éviter un risque environnemental, veiller à ce que toute fuite de fluide soit récupérée dans des dispositifs adéquats conformément aux normes locales.
- 9. Ne pas utiliser les mains pour contrôler toute fuite de réfrigérant ;
- 10. L'expulsion accidentelle de réfrigérant peut provoquer une raréfaction de l'oxygène et donc un risque d'asphyxie : installer la machine dans un local ventilé conformément à la norme EN 378-3 et la réglementation locale en vigueur. Tout opérateur s'approchant de la machine devra être muni d'un détecteur de fuites de réfrigérant correctement étalonné et homoloqué;
- 11. L'unité est équipée de dispositifs contre les surpressions (soupapes de sûreté): si ces dispositifs interviennent, le fluide frigorigène est libéré à haute température et à grande vitesse. Empêcher que la projection de gaz n'endommage les personnes ou les objets;
- 12. Installer l'unité à une distance suffisante des fosses de drainage ;
- 13. Conserver tous les lubrifiants dans des récipients dûment marqués. Ne pas conserver de liquides inflammables à proximité de l'installation.

PRÉVENTIONS

- Contrôler le positionnement correct des protections aux éléments mobiles avant de remettre l'unité en marche;
- Les ventilateurs, les moteurs et les courroies de transmission peuvent être en mouvement: avant d'y accéder, toujours attendre qu'ils s'arrêtent et prendre les précautions opportunes pour empêcher leur actionnement;
- 3. l'unité et les tuyauteries ont des surfaces très chaudes et très froides qui comportent un risque de brûlure;
- 4. Avant d'ouvrir un panneau de la machine, contrôler si celui-ci est fixé solidement ou pas à la machine avec des charnières :
- Les ailettes des échangeurs de chaleur, les bords des composants et des panneaux métalliques peuvent provoquer des blessures dues aux coupures;
- 6. L'installation doit garantir que la température du fluide à l'entrée de l'unité soit maintenue stable et dans les limites prévues ; prêter donc attention au réglage des dispositifs externes d'échange et de contrôle thermique (drycooler, tours de refroidissement, vannes de zone, ...), au dimensionnement adéquat de la masse de fluide en circulation dans l'installation (en particulier lorsque des zones de l'installation sont exclues) et installer des systèmes de recirculation du débit de fluide requis de manière à maintenir les températures de la machine dans les limites autorisées (par exemple pendant la phase de démarrage) :
- 7. Le matériel utilisé pour l'emballage de protection de la machine doit toujours être tenu hors de la portée des enfants car il représente une source de danger;
- Sur les unités avec des compresseurs en parallèle, ne pas désactiver les compresseurs individuels pendant de longues périodes;
- Comme cette unité est destinée à être installée à l'extérieur uniquement et dans une zone dont l'accès est autorisé, il n'y a pas de limite de charge.

3 CRITÈRES DE CHOIX DES ÉCHANGEURS EN FONCTION DE L'EMPLACEMENT D'INSTALLATION DE L'UNITÉ

Le guide fournit des conseils pour les applications, mais il n'est pas possible dans ce document de prendre en compte tous les risques et les conditions possibles existant dans le lieu de destination réel de nos produits.

Pour ces raisons, cette section présente les avertissements et les mises en garde de base à prendre en compte en général, étant entendu que :

- Il appartient au client (ou au professionnel désigné par celui-ci) de faire le choix final du type d'échangeur en fonction du lieu d'installation.
- Dans tous les cas, il est recommandé de laver fréquemment les batteries (un intervalle maximum de trois mois est conseillé, moins si les atmosphères sont particulièrement sales ou agressives) pour préserver leur état et assurer le bon fonctionnement de l'unité.

Les milieux extérieurs potentiellement corrosifs sont par exemple les zones à proximité des côtes, les sites industriels, les aires urbaines à densité élevée, certaines régions rurales, ou des combinaisons de ces milieux. D'autres facteurs, entre autres la présence de gaz effluents, de bouches d'égouts, ou d'égouts ouverts et les gaz d'échappement des moteurs diesel, peuvent tous avoir des retombées nocives sur les batteries à microcanal.

Le but de ce guide aux applications est de fournir des informations générales sur les mécanismes de corrosion et sur les milieux corrosifs.

RÉGIONS CÔTIÈRES/MARINES

les zones côtières ou les milieux marins sont caractérisés par une abondance de chlorure de sodium (sel), qui est transporté par les embruns, la brume ou le brouillard. Il est très important de noter que cette eau salée peut être transportée pendant de nombreux kilomètres par la brise et les courants de marée. Il n'est pas rare de constater une contamination par eau salée même à plus de 10 km de la côte.

Pour cette raison, il peut être nécessaire de protéger les échangeurs des électrolytes d'origine marine par un choix approprié de matériaux et/ou un traitement de protection adéquat.

MILIEUX INDUSTRIELS

Les applications industrielles sont associées avec de nombreuses conditions différentes, potentiellement en mesure de produire des émissions atmosphériques de nature variée.

Les contaminants d'oxyde de soufre et azote sont, la plupart des fois, dus aux régions urbaines à densité élevée. La combustion des huiles de carbone et des huiles combustibles dégage des oxydes de soufre (SO₂, SO₃) et des oxydes d'azote (NO_x) dans l'atmosphère. Ces gaz s'accumulent dans l'atmosphère et reviennent à terre sous forme de pluies acides ou de rosée à pH has

Les émissions industrielles ne sont pas seulement potentiellement corrosives : de nombreuses particules de poussière industrielle peuvent être chargées de composants nocifs, comme les oxydes de métal, les chlorures, les sulfates, l'acide sulfurique, le carbone et les composés de carbone.

Ces particules, en présence d'oxygène, d'eau ou de milieux avec une humidité élevée, peuvent s'avérer extrêmement corrosives et prendre de multiples formes, y compris la corrosion générale ou celle localisée, comme celle par piqûre ou en nid de fourmis.

COMBINAISON DE MILIEUX MARINS/INDUSTRIELS

Un brouillard marin chargé de salinité, associé aux émissions nocives d'un milieu industriel, constitue une grave menace.

Les effets combinés du brouillard chargé de salinité et des émissions industrielles accélèrent la corrosion

À l'intérieur des usines, les gaz corrosifs peuvent dériver de l'usinage des produits chimiques ou des procédés industriels typiquement utilisés dans les activités de manufacture.

Les égouts à ciel ouvert, les tuyaux d'évacuation, les émissions de moteur diesel, les émissions rejetées par une circulation intense, les décharges, les échappements des avions et des navires, les usines industrielles, les installations de traitement chimique (à proximité d'une tour de refroidissement) et les centrales à combustible fossile sont tout autant de sources de risques potentielles à prendre en considération.

RÉGIONS URBAINES

Les régions à densité élevée ont généralement de hauts niveaux d'émissions de véhicules et l'augmentation d'usage des combustibles, pour le chauffage des bâtiments.

Ces deux types d'émission ont un impact négatif sur les concentrations en oxyde de soufre (SO_x) et d'azote (NO_x), qui accroissent en conséquence.

Dans certains milieux couverts également, comme les structures avec piscine et les installations pour le traitement de l'eau, des atmosphères corrosives peuvent se produire.

Il est conseillé de prêter une attention particulière au positionnement des unités si elles sont installées à proximité immédiate de ces lieux, et d'éviter qu'elles soient installées près des sorties d'air de ces derniers, ou en tout cas exposées à de telles atmosphères.

La gravité de la corrosion dans les milieux urbains dépend des niveaux de pollution qui, à leur tour, dépendent de plusieurs facteurs, incluant la densité de population dans la zone concernée.

Tout équipement installé à proximité de gaz d'échappement de moteurs diesel, de cheminées d'incinérateur ou de chaudières à combustible ou encore à proximité de zones exposées aux émissions de combustible fossile, est à considérer comme soumis aux mêmes mesures qu'une application industrielle.

ZONES RURALES

Les zones rurales peuvent avoir de hauts niveaux de pollution d'ammoniaque et d'azote produite par les déjections animales, les fertilisants et les concentrations élevées de gaz d'échappement de moteurs diesel. L'approche à ce type de milieu doit être en tous points semblable à celui des milieux industriels.

Les conditions météo locales ont un rôle considérable dans la concentration ou la dispersion des contaminants gazeux extérieurs.

Les inversions thermiques peuvent bloquer les agents polluants, en produisant de sérieux problèmes de pollution de l'air.

PRÉCAUTIONS SUPPLÉMENTAIRES

Bien que chaque milieu corrosif parmi ceux traités ci-dessus puisse être nuisible pour la vie de l'échangeur, beaucoup d'autres facteurs doivent être considérés avant de choisir le projet définitif

Le climat local environnant le site d'application pourrait être influencé par la présence de :

- vent
- poussière
- sels routiers
- piscines
 - gaz d'échappement de moteurs diesel/trafic
- brouillard localisé
- agents détergents pour usage domestique
- bouches d'égouts
- de nombreux autres agents contaminants séparés

Même dans un rayon de 3-5 km de ces climats locaux particuliers, un environnement normal ayant des caractéristiques modérées peut être reclassé comme milieux exigeant des mesures préventives contre la corrosion. Quand ces facteurs font directement et immédiatement partie de l'environnement, leur influence est ultérieurement aggravante.

Ce n'est qu'en l'absence de situations potentiellement risquées telles que celles mentionnées ci-dessus qu'un environnement peut être considéré comme modéré.

Application	Conseil
Environnements difficiles	Batteries avec protection adéquate
Environnements modérés	Batterie standard °

4 DESCRIPTION DE L'UNITÉ

CARACTÉRISTIQUES

Pompe à chaleur réversible condensée en air pour des installations de climatisation avec production d'eau glacée pour le rafraîchissement des environnements et d'eau chaude pour les services de chauffage, indiquée pour être assortie à de petits et moyens dispositifs.

Elle est optimisée pour le fonctionnement chaud et peut être couplée à des systèmes d'émission à basses températures comme le ventilo-convecteur ou le chauffage au sol, mais aussi aux radiateurs les plus conventionnels.

Dotée de compresseurs rotatifs à inverter, de ventilateurs à inverter, de batteries à ailettes en cuivre avec des ailettes en aluminium, d'un échangeur côté installation à plaques.

Le socle, la structure et les panneaux sont en acier traité avec des peintures de polyester

Elle est réalisée de façon à garantir la plus grande accessibilité pour les opérations de service et de maintenance.

Le réglage par micro-procession se caractérise par les fonctions évoluées et des réglages

Le clavier possède, en plus des boutons de commande, un afficheur à cristaux liquides qui permet de consulter et d'intervenir sur l'unité au moyen d'un menu à plusieurs niveaux, avec réglage au choix de la langue et il contrôle :

- La température pour utiliser l'installation pour le rafraîchissement / le chauffage des environnements. La gestion des différentes températures s'effectue automatiquement sur la base des conditions de fonctionnement de l'appareil et des demandes.
- La gestion et l'historique des alarmes pour obtenir toujours un diagnostic ponctuel du fonctionnement de l'unité.
- La création de créneaux horaires de fonctionnement, nécessaires pour une programmation efficace
- Pour le dégivrage, une logique de type autoadaptative est utilisée; elle permet de régler le nombre de dégivrages garantissant plus d'efficacité.
- Pour plus d'informations, consulter le manuel utilisateur.

DISPOSITIFS DE SÉCURITÉ ET DE RÉGLAGE

La sécurité et la régulation de l'unité sur le circuit frigorifique sont obtenues avec les dispositifs suivants :

- Pressostat de haute pression : à réglage fixe, placé côté haute pression du circuit frigorifique, il arrête le fonctionnement du compresseur en cas de pression de service anormale. A réarmement automatique.
- Transducteur de haute pression: il est placé sur le côté à haute pression du circuit frigorifique, et il communique à la carte de contrôle la pression de travail, en enclenchant une pré-alarme dans le cas de pressions anormales.
- Transducteur de basse pression: il est placé sur le côté à haute pression du circuit frigorifique, et il communique à la carte de contrôle la pression de travail, en enclenchant une pré-alarme dans le cas de pressions anormales.

le remplacement des dispositifs de sécurité doit être effectué par le service d'assistance technique Aermec S.p.A., en utilisant uniquement des composants d'origine, se référer au catalogue des pièces de rechange.

INTERDIT: De faire fonctionner l'unité hors de sa plage de travail et avec les dispositifs de sécurité inopérants

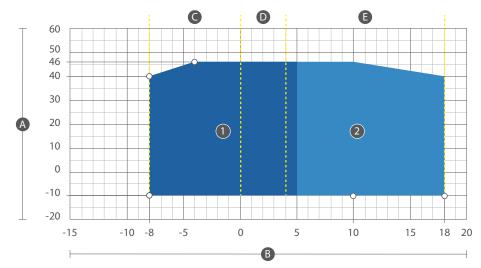
Vanne de sécurité du circuit frigorifique

Situées dans les branches de haute et basse pression, elles ont pour fonction de protéger le réservoir du ballon tampon du liquide et le séparateur de liquide de l'augmentation de la pression au-delà de niveaux dangereux.

Calibrée à 6 bar et avec l'évacuation dirigeable, elle intervient, en cas de pressions anormales, en évacuant la surpression.

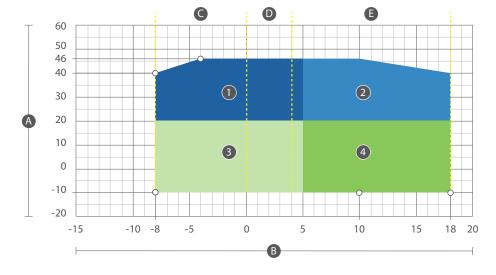
5 LIMITES DE FONCTIONNEMENT

Les unités, en configuration standard, ne sont pas adéquates pour une installation en milieu salin. Les valeurs indiquée se réfèrent aux limites de température min. et max. de l'unité, pour de plus amples informations, consultez le programme de sélection Magellano disponible sur le site Aermec.


Les limites de température min. et max sont mises en évidence dans l'enveloppe. Il est recommandé de tenir compte de ces températures si le transport est effectué dans un conteneur.

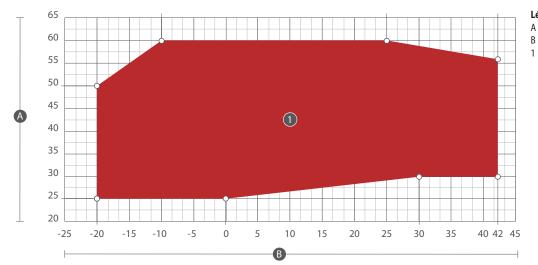
Attention: Avec une température de l'air extérieur ≤ à 10 °C, nous conseillons de prévoir un pourcentage de Glycol dans le circuit hydraulique afin d'éviter tout dommage à l'unité.

MODE REFROIDISSEMENT


020 - 030 - 040 - 045 - 050 - 085

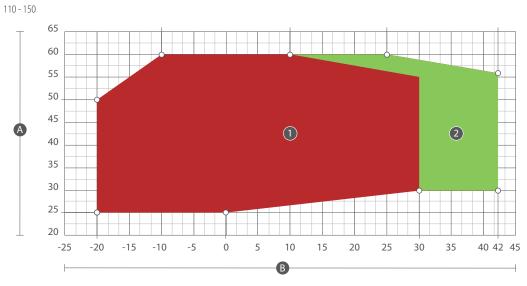
Légende

- Température de l'air extérieur (°C)
- B Température eau produite (°C)
- C Fonctionnement avec vanne Y
- D Fonctionnement avec vanne Z
- E Fonctionnement avec vanne °
- 1 Fonctionnement avec du glycol (vanne
- 2 Fonctionnement standard (vanne °)



Légende

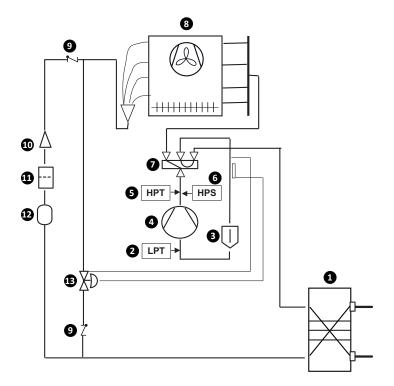
- Température de l'air extérieur (°C)
- B Température eau produite (°C)
- C Fonctionnement avec vanne Y
- D Fonctionnement avec vanne Z
- E Fonctionnement avec vanne °
- 1 Fonctionnement avec du glycol (vanne Y/Z)
- 2 Fonctionnement standard (vanne °)
- 3 Fonctionnement avec DCPX et du glycol (vanne Y/Z)
- 4 Fonctionnement avec DCPX (vanne °)


MODE EN CHAUFFAGE

020 - 030 - 040 - 045 - 050 - 085

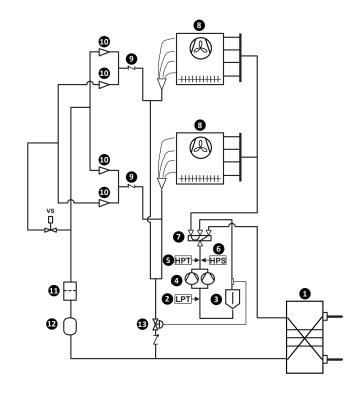
Légende

- Température de l'air extérieur (°C)
 - Température eau produite (°C)
- Fonctionnement standard (vanne °)



Légende

- A B Température de l'air extérieur (°C)
 - Température eau produite (°C) Fonctionnement standard
- Fonctionnement avec DCPX


6 SCHÉMAS FRIGORIFIQUE DE PRINCIPE

ANK 020-085

- 1 Échangeurs à plaques
- 2 Transducteur de basse pression
- 3 Séparateur du liquide
- 4 Compresseur
- 5 Transducteur de haute pression
- 6 Pressostat haute pression
- 7 Vanne d'inversion de cycle
- 8 Batterie avec ailettes
- 9 Vanne unidirectionnelle
- 10 Orifice calibré11 Filtre déshydrateur
- 12 Ballon du liquide
- 13 Détendeur thermostatique mécanique

ANK 100-150

- 1 Échangeurs à plaques
- 2 Transducteur de basse pression
- 3 Séparateur du liquide
- 4 Compresseur
- 5 Transducteur de haute pression
- 6 Pressostat haute pression
- 7 Vanne d'inversion de cycle
- 8 Batterie avec ailettes
- 9 Vanne unidirectionnelle
- 10 Orifice calibré
- 11 Filtre déshydrateur
- 12 Ballon du liquide
- 13 Détendeur thermostatique mécanique

RÉCEPTION DU PRODUIT

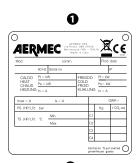
Contrôles à la réception

Pour éviter tout dommage pendant le transport, les unités sont entièrement enveloppées dans des emballages et protégées par des éléments en plastique.

Il est conseillé de conserver cette protection pendant toutes les opérations de transport et de levage et de ne pas enlever les éléments en plastique jusqu'à la mise en marche.

À l'intérieur du panneau d'accès aux parties électriques, vous trouverez une enveloppe contenant les documents suivants :

- Livret d'instructions pour l'installateur et le service technique avec la déclaration de conformité sur les premières pages
- Livret d'utilisation de l'unité
- Schémas électriques


Le manuel d'instruction fait partie intégrante de l'unité, il est donc recommandé de le récupérer, de le lire et de le conserver soigneusement. En cas de perte, toute copie éventuelle est disponible dans l'espace d'assistance du site www.aermec.com.

Après la réception, il faut :

- Contrôler que l'extérieur n'ait été aucunement endommagé;
- Contrôler que les dispositifs de levage et de transport soient adaptés au type des appareils et qu'ils soient conformes aux caractéristiques indiquées dans les instructions de transport et de maintenance de ce manuel;
- Contrôler que les accessoires nécessaires à l'installation sur place aient été livrés et qu'ils fonctionnent :
- Contrôler que l'appareil fourni corresponde à la commande et au bon de livraison ;

Identification du produit

Les produits Aermec sont identifiables grâce à l'étiquette d'emballage qui reporte les données d'identification du produit et à la plaque technique qui reporte les données techniques des performances et d'identification de l'unité en votre possession.

- 1 Plague technique
- 2 Étiquette d'emballage

Lors du positionnement de l'unité, veiller à ce que la plaque signalétique soit bien visible, car les informations qu'elle contient sont essentielles pour un entretien correct.

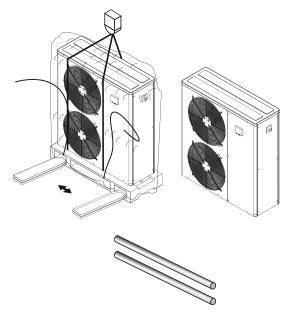
MANUTENTION ET DÉBALLAGE

Avant d'effectuer les opérations de déballage et de transport, porter des vêtements de protection personnelle et utiliser des moyens et des outils adaptés à la taille et au poids de l'appareil.

Toutes les opérations de manutention doivent être effectuées par du personnel qualifié, en respectant scrupuleusement toutes les procédures de sécurité applicables.

Les opérations de manutention doivent être effectuées avec soin pour éviter tout dommage, l'unité ne peut être manipulée qu'en position horizontale et uniquement par le bâti.

Il est interdit de disperser dans l'environnement et de laisser à la portée des enfants : le matériau d'emballage car il peut être une source de danger potentiel. Il doit donc être éliminé conformément à la législation en vigueur.


La manutention de l'unité peut être effectuée en utilisant :

- Avec un chariot élévateur
- Avec un palan ou une grue

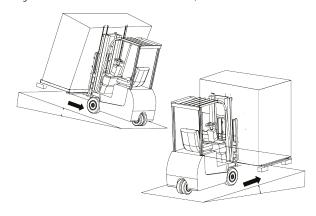
LEVAGE AVEC PALAN OU GRUE

S'il est prévu de soulever la machine avec des sangles, placer des protections entre les sangles (ou cordes, chaînes) et la charpenterie pour que la structure ne soit pas endommagée.

En cas de levage (ANK 100-150), insérer dans les orifices (Ø 34mm) prévus sur le bâti de l'unité des tubes d'une longueur (NON FOURNIS) suffisante pour permettre de positionner les courroies de levage et les goupilles de sécurité.

Obligatoire:

- Suivre l'ensemble des règlements et des normes de sécurité;
- Avant le levage, vérifier le poids indiqué sur la plaque de l'emballage;
- Contrôler que les dispositifs de levage soient adaptés au type d'appareil;
- Utiliser uniquement des dispositifs de manutention avec une capacité de charge suffisante :
- Porter des lunettes de protection, des gants de travail et des chaussures de sécurité;
- Utiliser des protections pour éviter d'endommager l'unité;
- Ne pas manutentionner d'autres charges avec l'unité
- Afin d'éviter tout glissement de l'unité, faire attention au déplacement du centre de gravité lors du levage;
- Faire très attention aux équipements lourds et volumineux pendant les opérations de levage et de manutention et pendant l'appui au sol;
- Tous les panneaux doivent être fermement fixés avant de déplacer l'unité;
- Utiliser tous les points de levage indiqués et uniquement ceux-ci;
- Utiliser des câbles conformes aux normes et d'une longueur égale ;
- S'assurer que les bandes ne se désolidarisent pas des tubes pour le levage pendant les opérations;
- Utiliser une entretoise balancier conforme aux normes (non fournie) voir le dessin;
- Déplacer l'unité avec précaution et sans mouvements brusques ;
- Ne pas stationner sous l'unité pendant le levage.
- L'unité ne doit jamais être inclinée à un angle supérieur à 5°.


MANUTENTION AVEC CHARIOT-ÉLÉVATEUR

L'unité est fournie sur quatre blocs de bois, fixés par des vis aux sommets inférieurs de la base de l'unité.

Les précautions suivantes doivent être prises lors de la manutention avec un chariot élévateur à fourche :

- Utiliser uniquement des dispositifs de manutention avec une capacité de charge suffisante;
- Utiliser des protections pour éviter d'endommager l'unité;
- Ne pas déplacer d'autres charges en même temps que l'unité;
- Tous les panneaux doivent être fermement fixés avant de déplacer l'unité;
- Faire attention au déplacement du centre de gravité pendant la manutention ;
- Porter des éguipements de protection individuelle adéquats ;
- Déplacer l'unité avec précaution et sans mouvements brusques ;
- L'unité ne doit jamais être inclinée à un angle supérieur à 5°.

Les fourches du chariot-élévateur doivent passer complètement sous la charge. En descente, la charge doit être abaissée dans le sens inverse, avec le mât incliné vers l'arrière. En montée, la charge doit être soulevée dans le sens de la marche, avec le mât incliné vers l'arrière.

STOCKAGE

Il peut advenir que, après réception, les unités ne sont pas immédiatement installées. En cas de stockage de durée moyenne-longue, nous recommandons d'appliquer les procédures suivantes:

- Les unités ne peuvent pas être empilées ;
- Vérifier les éventuels dégâts
- S'assurer qu'il n'y a pas d'eau dans les systèmes hydrauliques ;
- Ne pas retirer les protections de l'échangeur de chaleur;
- Ne pas retirer les films protecteurs en plastique ;
- S'assurer que les panneaux électriques sont fermés ;
- Avant d'utiliser l'équipement, stocker tous les articles fournis dans un endroit sec et propre afin qu'ils puissent être utilisés par la suite.

La température minimale et maximale de stockage des unités dépend du type de fluide frigorigène contenu, voir le tableau. Au-delà de cette limite, il y a un risque de fuite de fluide frigorigène par les soupapes de sûreté.

Température maximum de stockage							
Réfrigérant	Туре	Classe	Temp. (°C)	min. Temp. max. (°C)			
R134a	HFC	A1	-20 °C	< 50 °C			
R410A	HFC	A1	-20 °C	< 50 °C			
R513A	HFC	A1	-20 °C	< 50 °C			
R32	HFC	A2L	-20 °C	< 50 °C			
R1234ze	HFO	A2L	-20 °C	< 50 °C			

LIEU D'INSTALLATION

à l'extérieur, en position fixe, dans une zone appropriée, en prévoyant l'espace technique nécessaire. Ceci est indispensable soit pour permettre les interventions de maintenance ordinaire et extraordinaire soit pour les exigences du fonctionnement, car cet appareil doit récolter l'air de l'extérieur le long des côtés du périmètre et l'évacuer vers le haut.

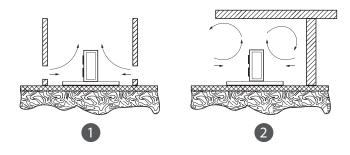
Pour le bon fonctionnement de l'unité, elle devra être installée sur un plan parfaitement horizontal.

S'assurer que le plan d'appui est en mesure de soutenir le poids de la machine.

L'emplacement des unités doit être déterminé par le concepteur de l'installation ou une personne compétente en la matière et doit tenir compte à la fois des exigences purement techniques et de toute législation locale en vigueur.

Pour l'installation de l'unité, il est important de mettre en acte les tâches prépara-toires suivantes :

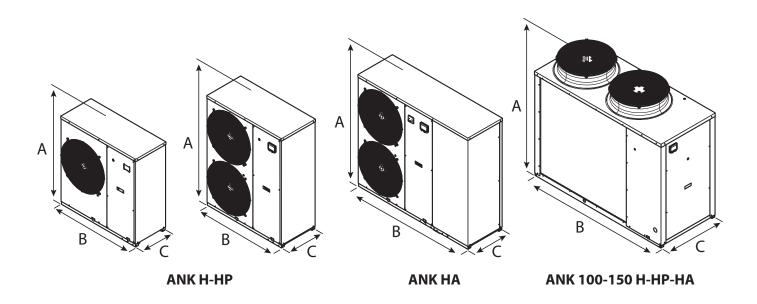
Il faut éviter


Positionnement dans des cavités, des trous et/ou des cours anglaises ;

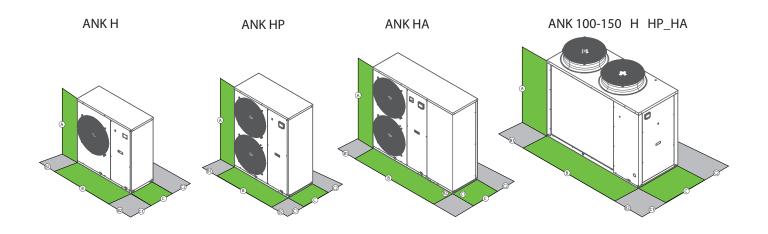
- Obstacles ou barrières qui provoquent la recirculation de l'air d'expulsion ;
- Vents qui obstruent la circulation de l'air. Prévoir des barrières brise-vent ;
- Présence d'agents atmosphériques ou environnementaux qui peuvent corroder ou endommager les composants du circuit frigorifique, provoquant des fuites de réfrigérant dans l'environnement;
- Lieux où le niveau sonore de l'unité peut être renforcé par des réverbérations ou des résonances;
- Le positionnement dans les coins où se déposent habituellement la poussière, les feuilles, etc. peut réduire l'efficacité de l'appareil par obstruction du passage d'air;
- Sources de polluants à proximité de l'unité;
- Sources de chaleur à proximité de l'unité;
- Éviter de placer l'unité sur des surfaces de couleur sombre pour éviter toute surchauffe en cours de fonctionnement;
- L'exposition directe au rayonnement solaire dans les endroits où les températures sont élevées :
- Remise en circulation de l'air expulsé en aspiration ;
- Éviter que l'expulsion de l'air par l'appareil puisse pénétrer dans les pièces habitées à travers les portes et les fenêtres;
- Éviter que l'expulsion de l'air par l'unité soit gênée par un vent contraire ;
- Pour le positionnement des unités de refroidissement à air pour usage externe, choisir un endroit pas trop exposé au vent (installer des brise-vents si la vitesse excède 2,2 m/s).
- Transmission des vibrations. Dans le cas des installations qui exigent des niveaux de vibrations particulièrement bas, il est possible d'utiliser des supports anti-vibrations.

POSITIONNEMENT

Les unités doivent :


- Étres installées dans un lieu inaccessible au public et/ou protégé contre l'accès des personnes non autorisées, si nécessaire prévoir également l'installation de clôtures;
- Étre positionnées sur une surface plane en mesure de supporter le poids de l'unité avec la charge de fluide frigorigène et d'eau complète, en plus de la présence occasionnelle d'équipements d'entretien :
- Dans des endroits exposés au gel, si l'unité est installée sur le sol, la base de sup-port doit reposer sur des colonnes en béton d'une profondeur supérieure à celle à laquelle le sol gèle. Il est toujours conseillé de construire une base de support séparée du corps principal pour éviter la transmission des vibrations;
- Si l'unité est installée dans un endroit potentiellement sujet à l'accumulation de neige ou à la formation de glace dans le bâti, prévoir qu'elle soit soulevée du sol à une hauteur d'au moins 300 mm au-dessus du sol;
- Il est conseillé d'utiliser des plots antivibratiles à ressort de dimensions correctes.
- L'unité doit être fixée aux supports anti-vibration et ceux-ci fermement fixés à la base en béton, vois chapitres distribution des poids et espaces techniques minimums. Contrôler que les surfaces de contact des supports anti-vibration sont nivelés à la base. Si nécessaire, utiliser des entretoises ou niveler la base; quoi qu'il en soit, s'assurer que les supports anti-vibration reposent de manière plane sur la surface de base;
- L'utilisation de plots antivibratiles à ressort DOIT être associée à l'installation de couplages flexibles dans les tuyauteries d'eau de l'unité. Les plots antivibratiles à ressort doivent être fixés à l'unité AVANT d'être reliés au sol. Le choix de la capacité des plots antivibratiles à ressort ne relève pas de la responsabilité d'AERMEC:
- Chaque côté de l'unité doit avoir l'espace nécessaire pour permettre tous les travaux d'entretien ordinaire et extraordinaire, l'évacuation d'air verticale ne doit pas être obstruée.

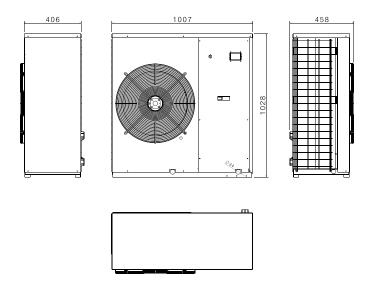
- Barrières brise-vent conseillées avec des vents supérieurs à 2,2 mm/s ;
- 2 Installation non autorisée;


DIMENSIONS ET POIDS

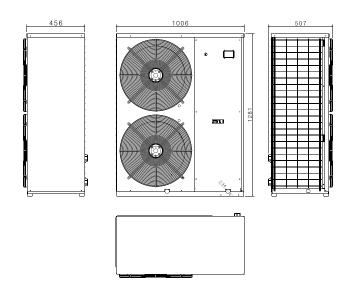
8

Taille			020	030	040	045	050	085	100	150
Dimensions et poids										
A	°,A,P	mm	1028	1281	1281	1281	1281	1281	1450	1450
D	°,P	mm	1000	1000	1000	1000	1000	1000	1750	1750
D	Α	mm	1358	1450	1450	1450	1450	1450	1750	1750
C	°,A,P	mm	400	400	450	450	450	450	750	750
	٥	kg	118	149	152	165	172	174	296	341
Poids à vide	A	kg	160	211	214	232	238	241	364	412
	Р	kg	123	154	157	175	182	184	314	362

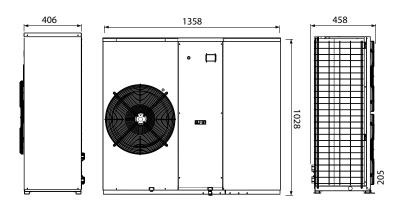
ESPACES TECHNIQUES MINIMUM

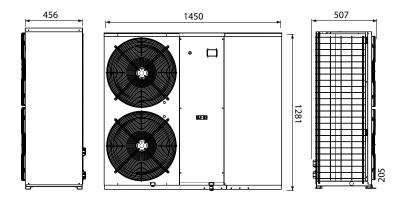


Taille			030	045	050
Espaces techniques minimum					
Type de tableau	°,A,P		1	1	1
D1	0	mm	200	200	200
DI	A,P	mm	300	300	300
B2	°,A,P	mm	500	500	500
(1	°,A,P	mm	Champ libre	Champ libre	Champ libre
0	0	mm	150	150	150
(2	A,P	mm	200	200	200

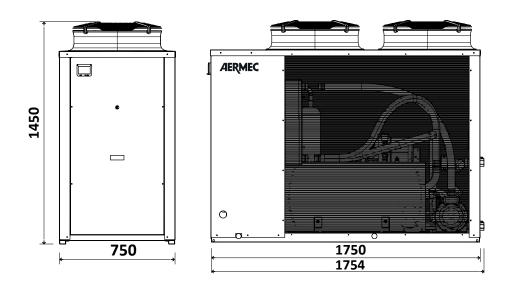

9 TABLES DES DIMENSIONS

Unité de mesure: mm

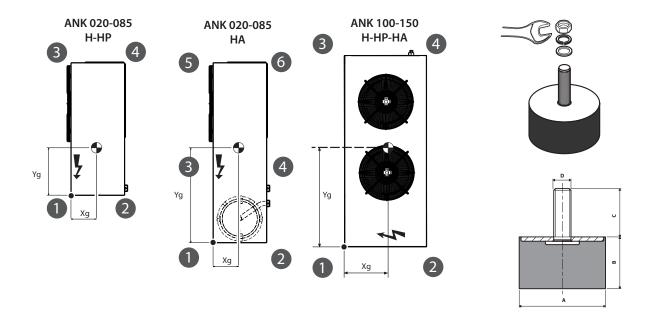

ANK 020 H - HP



ANK 030 - 040 - 045 - 050 - 085 H - HP



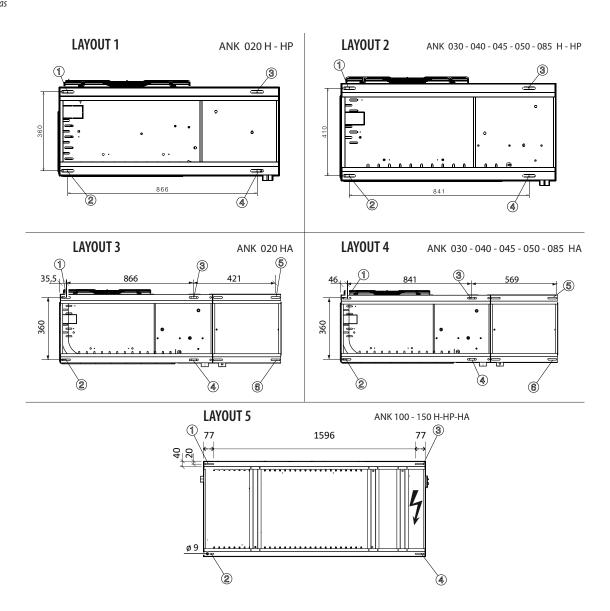
ANK 020 HA



ANK 100 - 150 H-HP-HA

10 POIDS ET CENTRES DE GRAVITÉ

٧	1	


Ver	020	030	040	045	050	085	100	150
°,P	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15
A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15	VT15
Support antivibratoires	1	2		3	3			N°VT
VT9	40	'	30	23		M8	'	4
VT15A	50		30	28.5		M10		6
VT15	50		30	28.5		M10		4
Taille				030		045		050
Poids								
	0	kg		149		165		172
Poids à vide	A	kg		211		232		238
	P	kg		154		175		182
Centre de gravité (à vide)								
	•	mm		199		204		204
X	A	mm		217		220		220
	Р	mm		199		203		203
	٥	mm		365		362		362
Υ	A	mm		633		643		643
	P	mm		359		352		352
Distribution des poids en % sur les suppo	orts (à vide)							
	0	%		35,4		34,9		34,9
1	A	%		12,0		10,7		10,7
	P	%		35,7		35,6		35,6
	0	%		28,1		28,9	-	28,9
2	A	%		11,7		10,8		10,8
	Р	%		28,4		29,2		29,2
	0	%		20,4		19,8		19,8
3	Α	%		22,6		23,8		23,8
	P	%		20,0		19,3		19,3
	0	%		16,2		16,4		16,4
4	A	%		22,0		24,0		24,0
	P	%		15,9		15,9		15,9
-	°,P	%		-		-		-
5	A	%		16,1		15,3		15,3
	°,P	%		-		-		-
6	A	%		15,6		15,4		15,4

Dans les installations avec plusieurs unités en parallèle, les groupes d'eau glacée doivent être reliés les uns aux autres. Utiliser des boulons à haute résistance pour structure et les fixer dans les 4 points prévus à cet effet et mis en évidence dans le dessin (trou ø 14 mm). Les unités doivent être installées sur un cadre structurel rigide et il faut utiliser des dispositifs appropriés pour soutenir le cadre et absorber les vibrations générées vers le sol ou vers le bâtiment sous-jacent. Consulter un sismologue afin de garantir l'intégrité du système, en cas de tremblement de terre.

POSITION DES TROUS DES ÉLÉMENTS ANTIVIBRATOIRES

Vue du bas

11 RACCORDEMENTS HYDRAULIQUES

L'unité est destinée à être connectée aux équipements suivants :

- un système hydraulique qui doit être conçu pour être classé selon la norme EN 378-1 comme un système indirect ventilé (réf. EN 378-1; 2016, par. 5.5.2.2: Système indirect ventilé), comme système indirect ventilé fermé (réf. EN 378-1; 2016, par. 5.5.2.3: Système indirect ventilé fermé), ou comme système indirect double selon la norme EN 378-1 (réf. EN 378-1; 2016, par. 5.5.2.4: Système indirect double).
- Le fluide intermédiaire (eau ou mélange eau-glycol) est en communication directe avec l'espace occupé et une perte de fluide frigorigène dans le circuit intermédiaire doit être dissipée dans une atmosphère extérieure à l'espace occupé et dans une zone convenablement ventilée pour éviter la formation d'atmosphères explosives.
- En particulier, pour un système fermé, cette condition exige l'installation d'un dispositif mécanique de taille appropriée pour collecter et évacuer le fluide frigorigène dans une position appropriée dans le circuit hydraulique. La présence éventuelle de vannes de purge et/ou de sécurité à l'intérieur de l'unité ne remplace en aucun cas la présence de ce dispositif.
- Le purgeur d'air automatique doit être installé à tous les points les plus élevés du circuit hydraulique, à l'extérieur du bâtiment et loin des sources d'inflammation, afin de garantir que le fluide frigorigène inflammable ne puisse pas s'écouler dans l'environnement en cas de fuite, nous recommandons donc une installation avec circuit primaire et secondaire.

Les unités sont disponibles avec ou sans kit hydronique intégré, quoi qu'il en soit :

ATTENTION! Laver soigneusement l'installation, avant d'attacher l'unité: ce nettoyage permet d'éliminer d'éventuels résidus comme des gouttes de soudure, des scories, de la rouille ou d'autres impuretés des tuyauteries. Autrement, ces substances peuvent se déposer à l'intérieur et provoquer un dysfonctionnement de l'appareil. Les tuyaux de raccordement doivent être adéquatement soutenus de manière à ne pas peser avec leur poids sur l'appareil.

ATTENTION! Le choix et l'installation des composants en dehors de l'appareil sont déférés à l'installateur qui devra opérer selon les règles de bonne technique et dans le respect des normes en vigueur dans le pays de destination.

ATTENTION! Les tuyauteries hydrauliques de raccordement à l'appareil doivent être adéquatement dimensionnées pour le débit effectif d'eau demandé par l'installation au cours du fonctionnement. Le débit de l'eau à l'échangeur doit toujours être constant.

ATTENTION! La charge et l'évacuation des fluides préposés à l'échange thermique doivent être effectués par des techniciens qualifiés au moyen des raccords prévus sur le circuit hydrauique en phase d'installation. Ne jamais utiliser les échangeurs de chaleur de l'unité pour recharger le fluide d'échange thermique.

Lors de la mise en service, il est obligatoire d'effectuer un test d'étanchéité du circuit hydraulique (pression minimale de 2,5 bar et recherche de fuites au niveau de chaque joint, par exemple à l'aide de mousse à bulles/eau et savon) avant de le remplir de glycol, afin d'éviter les reprises dues à des fuites qui pourraient se produire, par exemple, pendant le transport ou la manutention, même si le circuit a déjà été testé chez Aermec.

ATTENTION! Filtre et contrôleur de débit d'eau: Un filtre à eau et un contrôleur de débit doivent être installés en amont de chaque échangeur de chaleur s'ils ne sont pas fournis avec l'unité.

CONNEXIONS

Avant de mettre le système en marche, vérifier que les circuits hydrauliques soient raccordés aux échangeurs directs. La pompe de circulation de l'eau doit être installée de préférence en amont de manière à ce que l'évaporateur/condenseur soit soumis à une pression positive. Les connexions d'entrée et de sortie de l'eau sont indiquées dans les tableaux de dimensions de ce manuel ou sont disponibles sur le site www.aermec.com

Il est important de suivre les consignes (qui ne doivent pas être considérées comme exhaustives) reportées ci-après :

- Les tuyaux de l'eau ne doivent pas transmettre de forces radiales ou axiales ni de vibrations aux échangeurs (utiliser des tuyaux flexibles afin de réduire les vibrations transmises):
- Il est nécessaire d'installer des vannes de purge manuelles ou automatiques dans les points supérieurs du circuit et prévoir des raccords d'évacuation dans les points inférieurs afin de permettre l'évacuation de l'ensemble du circuit;

- Afin de maintenir la pression dans les circuits, il faut installer un vase d'expansion et un vanne de sécurité;
- Respecter les connexions d'entrée et de sortie de l'eau indiquées sur l'unité;
- Installer des manomètre sur les raccords d'entrée et de sortie de l'eau ;
- Installer des vannes d'arrêt à proximité des raccords d'entrée et de sortie de l'eau;
- Installer des joints élastiques flexibles pour le raccordement des tuyauteries ;
- Après avoir effectué un test d'étanchéité, isoler la tuyauterie pour réduire la dispersion thermique et pour prévenir la formation de condensation;
- Si les tuyaux de l'eau extérieurs se trouvent dans une zone où il est probable que la température ambiante descende en dessous de 0°C, isoler les tuyaux et prévoir un chauffage électrique. Comme option, il est possible de protéger aussi les tuyaux à l'intérieur de l'unité;
- Vérifier la continuité de la mise à la terre.

Il est interdit de faire fonctionner l'unité sans le filtre à eau installé et propre.

La charge et l'évacuation des fluides préposés à l'échange thermique doivent être effectués par des techniciens qualifiés au moyen des raccords prévus sur le circuit hydraulique en phase d'installation.

Ne jamais utiliser les échangeurs de chaleur de l'unité pour recharger le fluide d'échange thermique.

CARACTÉRISTIQUES DE L'EAU

Avant de charger l'installation, nous recommandons d'effectuer une analyse de l'eau, le circuit hydraulique doit être équipé de tous les dispositifs nécessaires au traitement de l'eau. L'utilisation d'eau non traitée ou mal traitée peut entraîner des dépôts de calcaire, d'algues, de boues ou des phénomènes d'érosion et de corrosion causant de graves dommages à l'échangeur de chaleur.

Il est conseillé de demander l'assistance d'un technicien spécialisé dans le traitement de l'eau afin d'établir la qualité de votre eau et les éventuelles mesures correctives.

Aermec décline toute responsabilité pour tout dommage résultant de l'utilisation d'eaux « lourdes » non traitées ou traitées de manière incorrecte.

À titre indicatif et non exhaustif, nous reportons le tableau de la qualité de l'eau conseillée pour les échangeurs à plaques :

Plante : Chiller avec échangeur de chaleur à plaques					
PH	7,5 - 9				
Dureté totale	4,5 - 8,5 °dH				
Conductivité électrique	10-500 μS /cm				
Température	< 65 °C				
Contenu d'oxygène	< 0,1 ppm				
Quantité max. glycol	50 %				
Phosphates (PO ₄)	< 2ppm				
Manganèse (Mn)	< 0,05 ppm				
Fer (Fe)	< 0,2 ppm				
Alcalinité (HCO ₃)	70 - 300 ppm				
lons chlorure (CI-)	< 50 ppm				
Chlore libre	< 0,5 ppm				
lons sulfate (SO ₄)	< 50 ppm				
Ion sulfure (S)	aucun				
Ions ammonium (NH ₄)	aucun				
Silice (SiO ₂)	< 30 ppm				

Il est donc fondamental de garder sous contrôle la concentration d'oxygène dans l'eau, en particulier dans les systèmes à vase ouvert. Ce type de système est très sensible au phénomène d'extra-oxygénation de l'eau (un événement qui peut être favorisé par le positionnement incorrect de certains composants). Ce phénomène peut conduire à la corrosion et à la perforation de l'échangeur de chaleur et des tuyaux.

ÉVACUATION DE L'INSTALLATION

Pendant l'hiver, en cas d'arrêt de l'installation, l'eau présente dans l'échangeur peut geler, provoquant des dommages irréversibles à l'échangeur.

Pour éviter le danger de gel les trois solutions suivantes sont possibles :

- 1. Vidange complète de l'eau de l'appareil;
- 2. Utilisation de résistances. Dans ce cas les résistances doivent toujours sous tension pendant toute la période o il existe la possibilité de formation de gel (machine en stand-by)
- Fonctionnement avec de l'eau glycolée, avec un pourcentage de glycol choisi en fonction de la température minimale extérieure prévue.

ATTENTION! S'assurer que des vannes de purge d'air ont été installées à tous les points les plus élevés du circuit hydraulique et en dehors des zones habitées. Pour permettre au circuit de se vider, s'assurer que les robinets de vidange ont été installés aux points les plus bas du circuit et sont ouverts.

PROTECTION ANTIGEL

L'ajout de glycol est la seule méthode efficace de protection contre le gel : la solution glycol / eau doit être suffisamment concentrée pour assurer une protection adéquate et empêcher la formation de glace à la température minimale prévue pour une installation donnée.

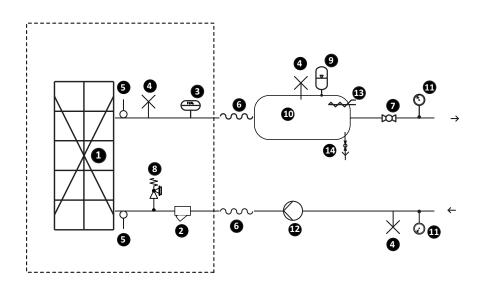
Prendre les précautions opportunes en cas d'utilisation de solutions antigel non passivées (mono glycol d'éthylène ou propylène glycol). Ces solutions antigel au contact de l'oxygène peuvent donner lieu à des phénomènes de corrosion. Il est donc conseillé de toujours se référer à la documentation du fournisseur de glycol pour vérifier la concentration conseillée.

INTERDIT! d'introduire le glycol dans le circuit hydraulique à proximité de la prise d'aspiration de la pompe :

- Une concentration élevée de glycol ou d'additifs supérieure aux limites admissibles, peut entraîner le blocage de la pompe;
- Ne pas utiliser la pompe comme mélangeur.

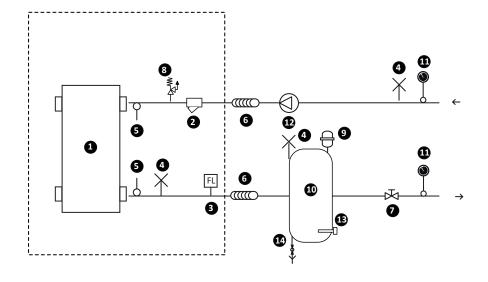
12 SCHÉMAS HYDRAULIQUES DE PRINCIPE

VERSION°



En l'absence de glycol, la machine doit être alimentée pour permettre le fonctionnement des résistances (si présentes) et des pompes (si présentes) pour éviter le gel et, donc, de provoquer des dommages aux composants du circuit hydraulique.

L'opération de flushing du circuit hydraulique (nettoyage du circuit hydraulique) de l'installation doit être effectuée en excluant le circuit hydraulique du refroidisseur. Vérifier de toute façon que l'eau n'est pas entrée dans le circuit du refroidisseur en veillant à ouvrir les évacuations présentes dans le circuit hydraulique du refroidisseur. L'eau éventuellement accumulée dans le circuit hydraulique du refroidisseur risque de provoquer le gel/endommager les composants.

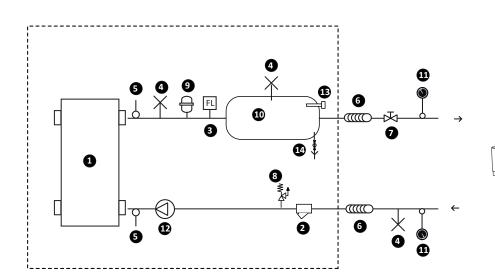

- Échangeurs à plaques
- Dans les versions sans kit hydraulique, le filtre à eau est fourni avec un tronçon pour le raccordement, tandis qu'il est fourni monté dans les versions avec kit hydraulique
- Fluxostat
- Vanne de purge
- Sondes des températures de l'eau (IN/
- Joints antivibration
- Robinets d'arrêt
- Soupape de sûreté
- 9 Vase d'expansion
- Ballon tampon
- Manomètre
- Pompe
- 13 Résistance
- 14 Robinet d'évacuation

8

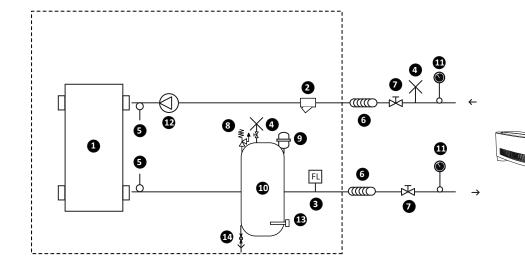
ANK 100-150

- Échangeurs à plaques
- Dans les versions sans kit hydraulique, le filtre à eau est fourni avec un tronçon pour le raccordement, tandis qu'il est fourni monté dans les versions avec kit hydraulique
- Fluxostat
- Vanne de purge
- 5 Sondes des températures de l'eau (IN/
- 6 Joints antivibration
- Robinets d'arrêt 8
 - Soupape de sûreté
- 9 Vase d'expansion 10 Ballon tampon
- 11 Manomètre
- 12
- Résistance à 200 W 13
- Robinet d'évacuation

VERSION A



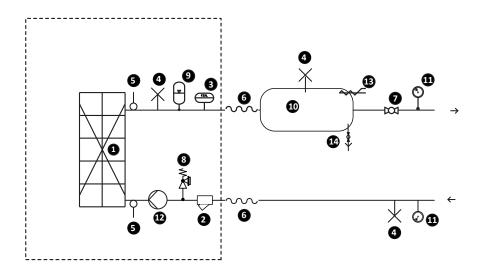
En l'absence de glycol, la machine doit être alimentée pour permettre le fonctionnement des résistances (si présentes) et des pompes (si présentes) pour éviter le gel et, donc, de provoquer des dommages aux composants du circuit hydraulique.

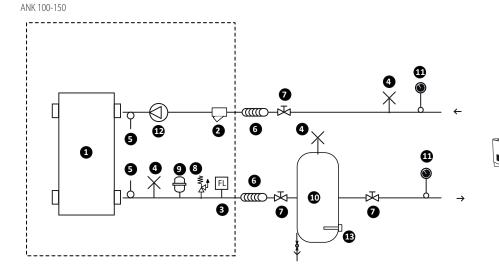


L'opération de flushing du circuit hydraulique (nettoyage du circuit hydraulique) de l'installation doit être effectuée en excluant le circuit hydraulique du refroidisseur. Vérifier de toute façon que l'eau n'est pas entrée dans le circuit du refroidisseur en veillant à ouvrir les évacuations présentes dans le circuit hydraulique du refroidisseur. L'eau éventuellement accumulée dans le circuit hydraulique du refroidisseur risque de provoquer le gel/endommager les composants.

- 1 Échangeurs à plaques
- 2 Dans les versions sans kit hydraulique, le filtre à eau est fourni avec un tronçon pour le raccordement, tandis qu'il est fourni monté dans les versions avec kit hydraulique
- 3 Fluxostat
- Vanne de purge
- 5 Sondes des températures de l'eau (IN/ OUT)
 - Joints antivibration
- 7 Robinets d'arrêt
- 8 Soupape de sûreté
- Vase d'expansion
- 10 Ballon tampon
- 11 Manomètre
- 12 Pompe
- 13 Résistance
- 14 Robinet d'évacuation

ANK 100-150


- Échangeurs à plaques
- Dans les versions sans kit hydraulique, le filtre à eau est fourni avec un tronçon pour le raccordement, tandis qu'il est fourni monté dans les versions avec kit hydraulique
- 3 Fluxostat
- 4 Vanne de purge
- 5 Sondes des températures de l'eau (IN/
- 6 Joints antivibration
- 7 Robinets d'arrêt
- 8 Soupape de sûreté
- 9 Vase d'expansion
- 10 Ballon tampon
- 11 Manomètre
- 12 Pompe
- 13 Résistance à 200 W
- 14 Robinet d'évacuation


En l'absence de glycol, la machine doit être alimentée pour permettre le fonctionnement des résistances (si présentes) et des pompes (si présentes) pour éviter le gel et, donc, de provoquer des dommages aux composants du circuit hydraulique.

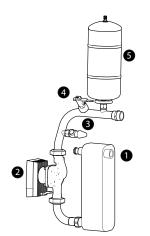
L'opération de flushing du circuit hydraulique (nettoyage du circuit hydraulique) de l'installation doit être effectuée en excluant le circuit hydraulique du refroidisseur. Vérifier de toute façon que l'eau n'est pas entrée dans le circuit du refroidisseur en veillant à ouvrir les évacuations présentes dans le circuit hydraulique du refroidisseur. L'eau éventuellement accumulée dans le circuit hydraulique du refroidisseur risque de provoquer le gel/endommager les composants.

- 1 Échangeurs à plaques
- 2 Dans les versions sans kit hydraulique, le filtre à eau est fourni avec un tronçon pour le raccordement, tandis qu'il est fourni monté dans les versions avec kit hydraulique
- 3 Fluxostat
- 4 Vanne de purge
- 5 Sondes des températures de l'eau (IN/ OUT)
- Joints antivibration
- Robinets d'arrêt
- 8 Soupape de sûreté
- 9 Vase d'expansion
- 10 Ballon tampon
- 11 Manomètre
- 12 Pompe
- 13 Résistance
- 14 Robinet d'évacuation

- Échangeurs à plaques
- Dans les versions sans kit hydraulique, le filtre à eau est fourni avec un tronçon pour le raccordement, tandis qu'il est fourni monté dans les versions avec kit hydraulique
- 3 Fluxostat

5

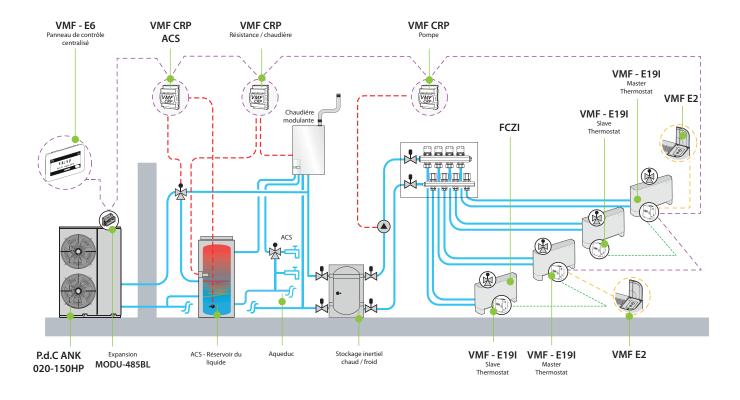
6


- 4 Vanne de purge
- Sondes des températures de l'eau (IN/ OUT)
- Joints antivibration
- 7 Robinets d'arrêt
- 8 Soupape de sûreté
- 9 Vase d'expansion
- 10 Ballon tampon
- 11 Manomètre
- 12 Pompe
- 13 Résistance à 200 W
- 14 Robinet d'évacuation

Caractéristiques de l'eau

Plante : Chiller avec échangeur o	Plante : Chiller avec échangeur de chaleur à plaques					
PH	7,5 - 9					
Dureté totale	4,5 - 8,5 °dH					
Conductivité électrique	10-500 μS /cm					
Température	< 65 °C					
Contenu d'oxygène	< 0,1 ppm					
Quantité max. glycol	50 %					
Phosphates (PO ₄)	< 2ppm					
Manganèse (Mn)	< 0,05 ppm					
Fer (Fe)	< 0,2 ppm					
Alcalinité (HCO₃)	70 - 300 ppm					
lons chlorure (CI-)	< 50 ppm					
Chlore libre	< 0,5 ppm					
lons sulfate (SO ₄)	< 50 ppm					
Ion sulfure (S)	aucun					
lons ammonium (NH ₄)	aucun					
Silice (SiO ₂)	< 30 ppm					

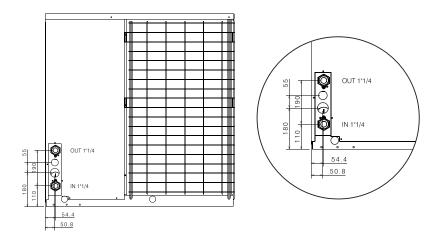
Il est donc fondamental de garder sous contrôle la concentration d'oxygène dans l'eau, en particulier dans les systèmes à vase ouvert. Ce type de système est très sensible au phénomène d'extra-oxygénation de l'eau (un événement qui peut être favorisé par le positionnement incorrect de certains compo-


sants). Ce phénomène peut conduire à la corrosion et à la perforation de l'échangeur de chaleur et des tuyaux.

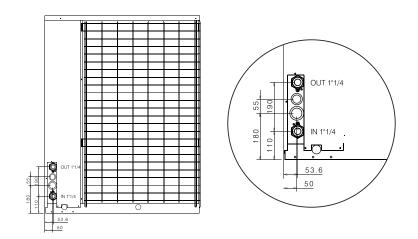
Groupe hydraulique

- 1 Échangeurs à plaques
- Circulateur
- 3 Soupape de sûreté
- 4 Fluxostat
- 5 Vase d'expansion

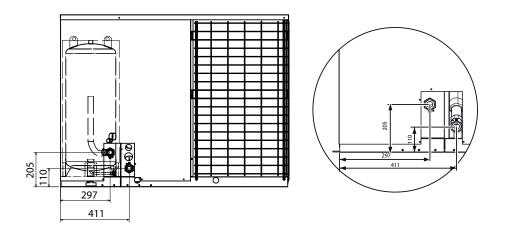
EXEMPLE D'INSTALLATION: CHAUFFAGE/REFROIDISSEMENT + EAU CHAUDE SANITAIRE

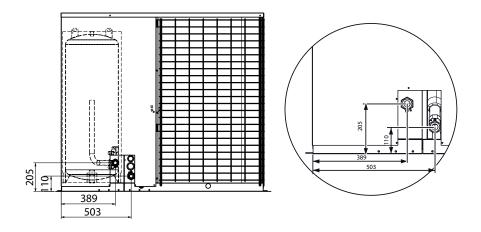


13 POSITION DES RACCORDS HYDRAULIQUES

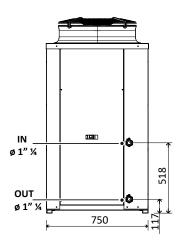


Pour DIMENSIONS et POSITION DES RACCORDS HYDRAULIQUES, se reporter au DWG file sur le site www.aermec.com ou le programme de sélection Magellano


ANK 020 H - HP



ANK 030 - 040 - 045 - 050 - 085 - H - HP



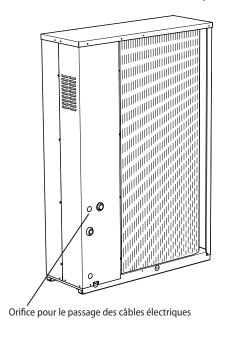
ANK 020 HA

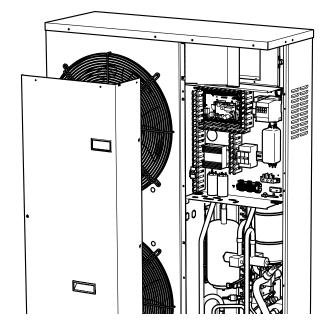
ANK 100 - 150 H - HP - HA

14 BRANCHEMENT ÉLECTRIQUE DE PUISSANCE AU SECTEUR

Toutes les opérations de nature électrique: doivent être accomplies par un personnel possédant les qualités requises prévues par la loi, formé et informé des risques liés à ce genre d'opérations.

Une fois les câbles de l'alimentation électrique aux bonnes dimensions, il appartient à l'installateur d'identifier la méthode de branchement la plus appropriée. Il devra définir toute modification qui pourrait être nécessaire sur le site afin de garantir un indice de protection IP20 en amont du sectionneur général de la machine et de prévenir le contact entre les extrémités des conducteurs et d'autres parties actives en cas de déconnexion accidentelle.


Il est interdit de positionner les câbles électriques dans des logements qui n'ont pas été spécifiquement prévus dans ce manuel.


Éviter les contacts directs avec les tuyaux en cuivre non isolés et avec le compresseur.

- Ouvrir les panneaux de couverture extérieurs (le cas échéant) ;
- S'assurer que le sectionneur est en position « OFF » avant d'ouvrir le tableau électrique pour brancher l'unité à l'alimentation électrique;
- Utiliser les plaques/trous de passage prédisposés pour le câble d'alimentation électrique générale et les câbles des autres branchements extérieurs à charge de l'installateur;
- Identifier les bornes pour le branchement électrique, consulter exclusivement le schéma électrique fourni avec l'unité.
- Retirer les éventuelles protections des points de fixation des câbles ;
- Pour le branchement fonctionnel de l'unité, porter le câble d'alimentation au tableau électrique à l'intérieur de l'unité et le brancher aux bornes/pôles L1-L2-L3 et PE, en respectant les polarités, L1-L2-L3 comme phases, et PE comme terre;
- Replacer toutes les protections retirées pour le branchement électrique ;
- Refermer tous les panneaux ouverts;
- Porter le sectionneur en position « ON » ;
- Alimenter l'unité en portant l'interrupteur général de l'installation (à l'extérieur de l'appareil) sur « ON »;
- Pour les branchements auxiliaires, consulter les schémas électriques fournis à bord de la machine.

Comment entrer dans le tableau électrique

Tableau de puissance

15 RACCORDEMENTS ÉLECTRIQUES

Pour les exigences de l'installation consulter obligatoirement le schéma électrique fourni avec l'appareil. Le schéma électrique ainsi que les manuels doivent être soigneusement conservés et mis à la disposition du personnel pour les interventions qui seront effectuées sur l'unité.

Les unités sont complètement câblées en usine et ont seulement besoin du raccordement au réseau d'alimentation électrique, en aval d'un interrupteur de groupe, conformément aux prescriptions des normes en vigueur en la matière dans le pays d'installation.

Nous conseillons aussi de vérifier que :

- Les caractristiques du réseau électrique soient appropriées aux courants absorbés indiqués dans le tableau des données électriques, en tenant compte des machines qui fonctionnent éventuellement simultanément;
- L'unité ne soit alimentée qu'après avoir terminé les travaux d'installation (hydrauliques et électriques);
- Respecter les indications de branchement des conducteurs de phase et de terre ;
- La ligne d'alimentation doit être dotée, en amont, d'une protection adéquate contre les courts-circuits et les dispersions vers la terre qui isole l'installation par rapport aux autres applications;
- La tension devra être comprise dans une tolérance de ±10% de la tension nominale d'alimentation de la machine (par unité triphasée décalage maxi 3% entre les phases).
 Si ces paramètres n'étaient pas respectés, contacter le fournisseur d'énergie électrique;
- Pour les raccordements électriques, utiliser des câbles à double isolation conformes aux normes en vigueur en la matière dans les différents pays.

Obligatoire

- D'utiliser un interrupteur magnétothermique omnipolaire, conforme aux Normes en vigueur (ouverture minimale des contacts de 3 mm), avec un pouvoir d'interruption adéquat et une protection différentielle conforme aux données électriques du tableau ci-dessous, installé le plus près possible de l'appareil;
- D'effectuer un raccordement efficace de la mise à la terre. Le Fabricant ne peut pas être considéré responsable des dommages éventuels causés par l'absence de mise à la terre de l'appareil ou son manque d'efficacité;
- Pour les unités avec une alimentation triphasée, vérifier le raccordement correct des phases.

Toutes les opérations de nature électrique: doivent être accomplies par un personnel possédant les qualités requises prévues par la loi, formé et informé des risques liés à ce genre d'opérations.

- Les caractéristiques des lignes électriques et de leurs composants doivent être déterminées par un personnel autorisé à concevoir des installations électriques, dans le respect des normes internationales et nationales du lieu d'installation de l'unité en conformité avec les normes législatives en vigueur au moment de l'installation;
- Il est obligatoire de vérifier l'étanchéité de la machine avant d'effectuer les raccordements électriques; la machine ne doit être alimentée que lorsque les travaux hydrauliques et électriques ont été achevés;
- Effectuer les raccordements électriques exclusivement via les sections préparées en utilisant des presse-étoupes appropriés avec un degré IP67 ou plus.
- Si le câble de l'alimentation est endommagé, il doit être remplacé par le constructeur ou par le service d'assistance technique ou de toute façon par une personne ayant une qualification similaire, afin de prévenir tout risque.

16 DONNÉES ÉLECTRIQUES

Les sections des câbles reportées dans le tableau sont conseillées pour une longueur maximale de 50 m. Pour des longueurs supérieures ou d'autres types de pose de câbles, il appartient au CONCEPTEUR de dimensionner adéquatement l'interrupteur de ligne, la ligne d'alimentation et la connexion de protection de terre ainsi que des câbles de raccordement en fonction de :

- la longeur ;
- le type de câble ;
- du courant absorbé de l'unité et de la dislocation physique ainsi que de la température ambiante.

Taille			020	030	040	045	050	085	100	150
ALIMENTATION: °										
Données électriques										
Courant maximal (FLA)	0	A	6,0	8,0	9,0	11,0	12,0	12,0	22,0	26,0
	A,P	Α	6,8	8,4	9,8	11,9	13,1	13,6	23,6	28,9
Courant de démarrage (LRA)	0	Α	40,0	40,0	54,0	61,0	71,0	91,0	73,0	105,0
	A,P	A	40,4	41,0	55,0	62,6	72,6	92,6	74,6	107,8
Courant de démarrage avec Soft-Start	°,A,P	A	-	-	-	=	-	-	-	-
ALIMENTATION: M										
Données électriques										
•	0	A	14,0	19,0	22,0	25,0	-	-	-	-
Courant maximal (FLA)	A	A	14,6	20,1	22,9	26,3	-	-	-	-
	P	A	14,6	20,1	22,9	26,3	-	-	-	-
	°,P	A	-	-	-	-	-	-	-	-
Courant de démarrage (LRA)	A	A	-	-	-	-	-	-	-	-
	0	A	45,0	45.0	45,0	45,0	-	_	_	-
Courant de démarrage avec Soft-Start	A	A	45,7	45,7	45,7	46,3	-	-	-	-
	P	A	45,7	45,7	45,7	46,3	-	-	_	-
Taille			020	030	040	045	050	085	100	150
ALIMENTATION: °										
Les câbles d'alimentation										
Phases	°,A,P	n°	3+N							
Câbles pour chaque phase	°,A,P	n°	1	1	1	1	1	1	1	1
Section câble	°,A,P	mm ²	2,5	2,5	2,5	2,5	4,0	4,0	6,0	10,0
Totale câbles	°,A,P	n°	4	4	4	4	4	4	4	4
Commandes et sécurités										
Section câble	°,A,P	mm²	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Mise à la terre (1)										
Section câble	°,A,P	mm ²	2,5	2,5	2,5	2,5	4,0	4,0	4,0	4,0
Section des câbles conseillés										
Interrupteur général	°,A,P	Α	16	16	16	16	25	25	25	32
ALIMENTATION: M										
Les câbles d'alimentation										
Phases	°,A,P	n°	1	1	1	1	-	-	-	-
Câbles pour chaque phase	°,A,P	n°	1	1	1	1	-	-	-	-
Section câble	°,A,P	mm ²	4,0	6,0	6,0	6,0	-	-	-	-
Totale câbles	°,A,P	n°	2	2	2	2	-	-	-	-
Commandes et sécurités										
Section câble	°,A,P	mm ²	1,5	1,5	1,5	1,5	-	-	-	-
Mise à la terre (1)										
Section câble	°,A,P	mm ²	4,0	6,0	6,0	6,0	-	-	-	-
Section des câbles conseillés										
Interrupteur général	°,A,P	A	25	25	40	40	-	-	-	-
(1) Mina à la taura qui dait âtra relifa à la manchia										

(1) Mise à la terre qui doit être reliée à la machine

17 PREMIÈRE MISE EN MARCHE - MISES EN GARDE

DÉMARRAGE

Opérations à exécuter en l'absence de tension

ATTENTION L'unité n'est pas en train de fonctionner.

Contrôler que :

- Toutes les conditions de sécurité ont été respectées ;
- L'unité a été correctement fixée au plan de support ;
- Les espaces techniques minimums aient été respectés
- Que les câbles d'alimentation générale soient d'une section appropriée, en mesure de supporter l'absorption globale de l'unité (voir la section données électriques) et que l'unité ait été connectée à la terre de façon correcte;
- Toutes les connexions électriques sont correctement fixées et que tous les terminaux sont correctement serrés;
- Contrôler que les connexions effectuées par l'installateur soient conformes à la documentation fournie :
- La présence d'éventuelles fuites de gaz réfrigérant, en particulier au niveau de prises de pression des manomètres, transducteurs de pression et pressostats (les vibrations, pendant le transport, pourraient desserrer les raccords).

Opérations à effectuer lorsque l'unité est sous tension

ATTENTION L'unité, quoi qu'il en soit, n'est pas en train de fonctionner.

- Mettre sous tension l'unité en tournant l'interrupteur général sur la position « ON » ;
- Vérifier avec un tester que la valeur de la tension d'alimentation soit égale à $400V \pm 10 \%$, vérifier en outre que le déséquilibre entre les phases ne soit pas supérieur à 3 %.
- Contrôler que les connexions effectuées par l'installateur soient conformes à la documentation fournie;
- Vérifier que la/les résistance(s) du carter compresseur fonctionne(nt), en mesurant la hausse de la température de la cuve de l'huile. La ou les résistances doivent fonctionner pendant 12 heures au moins avant le démarrage du compresseur, et dans tous les cas, la température de la cuve d'huile doit être de 10 - 15 °C supérieure à la température ambiante.

Contrôles au circuit hydraulique

 Contrôler que toutes les connexions hydrauliques soient correctement effectuées, que les indications des plaquettes soient observées et qu'un filtre mécanique ait été installé à l'entrée de l'évaporateur. (Composant obligatoire sous peine de voir déchoir la garantie);

- Contrôler que la/les pompe/s de circulation fonctionnent et que le débit d'eau est suffisant pour fermer le contact du contrôleur de débit, si installé ; nous conseillons toujours d'en installer un en amont de chaque échangeur.
- Contrôler le débit de l'eau en mesurant la différence de pression entre l'entrée et la sortie de l'évaporateur, calculer ensuite le débit à l'aide du tableau des pertes de charge de l'évaporateur qui se trouve dans le manuel technique;
- S'assurer, le cas échéant, que les fluxostats fonctionnent correctement; en fermant la vanne d'arrêt à la sortie de l'échangeur; sur le panneau de contrôle, l'unité doit afficher le blocage; à la fin ouvrir à nouveau la vanne et réarmer le blocage.

Première mise en marche

Après avoir scrupuleusement exécuté tous les contrôles susmentionnés, on peut mettre l'unité en fonction.

- Fermer le portillon du tableau électrique ;
- Positionner l'interrupteur principal de l'appareil sur « ON ». L'unité se met en marche quelques minutes plus tard.

Opérations à effectuer lorsque la machine est allumée

ATTENTION L'unité est en train de fonctionner.

Si vous devez effectuer des mesures ou des contrôles qui exigent le fonctionnement de la machine. il faut :

- Veiller à ce que tout système de commande à distance soit déconnecté; tenir compte du fait que le PLC à bord de la machine contrôle ses fonctions et qu'il peut activer et désactiver les composants en créant des situations de danger (comme par exemple alimenter et faire tourner les ventilateurs et leurs systèmes mécaniques d'entraînement).
- Contrôle de l'alarme du débit de l'eau: l'unité prévoit la gestion d'une alarme de débit de l'eau commandée par un pressostat différentiel ou un fluxostat le cas échéant. Ce type de sécurité peut intervenir après les 30 premières secondes de fonctionnement de la pompe, si le débit d'eau n'est pas suffisant. L'intervention implique le blocage du compresseur et de la pompe.
- La température de réglage antigel ne peut être modifiée que par un centre d'assistance agréé et seulement après avoir vérifié qu'il y a un pourcentage de solution antigel adéquat dans le circuit hydraulique. Si cette alarme se déclenche, appeler sans attendre le service d'assistance technique agréé

18 ENTRETIEN

Toute intervention de nettoyage, d'inspection, de contrôle, d'entretien ordinaire et extraordinaire : doit être effectuée par un personnel technique expérimenté, autorisé et qualifié pour mener à bien les activités mentionnées ci-dessus. Ces activités doivent être effectuées avec la machine éteinte et sans alimentation, de manière professionnelle, conformément aux lois nationales en vigueur. Durant l'exécution de ces activités, la machine présente les risques suivants :

- Risques de décharges électriques ;
- Risques de blessures dues à la présence de pièces rotatives ;
- Risques de blessures dues à la présence de pièces tranchantes et de poids lourds ;
- Risques de blessures dues à la présence de composants contenant des gaz à haute pression :
- Risques de blessures dues aux composants à haute ou à basse tem-pérature.
- Risques liés au bruit du fonctionnement de la machine ;
- Risques liés à la présence de substances nocives dans les circuits hydroniques.

Ces activités doivent être effectuées en portant les équipements de protection individuelle adaptés aux activités à effectuer.

Les opérations de maintenance sont fondamentales afin de maintenir le groupe frigorifique en parfait état d'efficience, aussi bien du point de vue purement fonctionnel que du point de vue énergétique et de la sécurité.

Le fabricant, en l'absence de réglementation spécifique concernant les fluides frigorigènes HFC, prescrit l'application et le respect de ce qui est indiqué dans :

- 1. Règlement (CE) N.842/2006- art.3 en matière de « limitation des fuites » ;
- Règlement (CE) N.1516/2007 en matière d'« exigences standards de contrôle des fuites » et lois nationales relatives de mise en œuvre des règlements européens cités ci-dessus.

ATTENTION Pour l'unité, l'utilisateur doit prévoir un livret de l'installation dans lequel lui, ou la personne autorisée à effectuer la maintenance de la machine, se chargera de reporter toutes les notes prescrites afin de garder une trace historique du fonctionnement de l'unité. L'absence de notes sur le livret peut valoir comme une preuve d'une carence de maintenance.

PRÉCAUTIONS ET PRÉVENTIONS À OBSERVER LORS DE L'ENTRETIEN

ATTENTION Les opérations de maintenance ne peuvent être effectuées que par des techniciens autorisés.

Précautions contre les risques résiduels risques mécaniques

ATTENTION Le circuit frigorifique contient du gaz réfrigérant sous pression :

- toute opération doit être effectuée par un personnel compétent et en possession des autorisations ou habilitations prévues par les lois en vigueur.
- pendant les opérations de purge, faire attention à toute fuite de fluides à des températures et/ou des pressions dangereuses.

IL EST INTERDIT DE CHARGER : le circuit frigorifique avec un fluide frigorigène différent de celui indiqué. Utiliser un fluide frigorigène différent peut causer des dommages importants à l'unité.

- Avant d'ouvrir un panneau de la machine, contrôler si celui-ci est fixé solidement ou pas à la machine avec des charnières;
- En cas de démontage d'une pièce, veiller à ce qu'elle soit bien remontée avant de remettre l'unité en marche;
- Les ailettes des échangeurs de chaleur, les bords des composants et des panneaux, des vis peuvent provoquer des blessures dues aux coupures;
- Ne pas enlever les protections des éléments mobiles pendant que l'unité est en marche;
- Contrôler le positionnement correct des protections aux éléments mobiles avant de remettre l'unité en marche;
- Il est interdit de marcher ou de poser d'autres corps sur les machines ;
- Les ventilateurs, les moteurs et les courroies de transmission peuvent être en mouvement : avant d'y accéder, toujours attendre qu'ils s'arrêtent et prendre les précautions opportunes pour empêcher leur actionnement;
- Si l'unité est équipée de composants de type inverter intégrés, débrancher l'alimentation électrique et attendre au moins 15 minutes avant d'y accéder pour l'entretien : les

- composants internes restent sous tension pendant cette période, ce qui crée un risque d'électrocution :
- Isoler l'unité du réseau électrique en intervenant sur le sectionneur extérieur prévu pour insérer jusqu'à 3 cadenas, pour le verrouiller en position « ouvert »;
- Placer un panneau avec l'inscription « Ne pas actionner maintenan-ce en cours » sur le sectionneur ouvert;
- Se doter des équipements de protection individuelle opportuns (ca-sque, gants isolants, lunettes de protection, chaussures de sécurité, etc.);
- S'équiper d'outils en bon état et s'assurer d'avoir bien compris les instructions avant de les utiliser:
- Ne pas effectuer d'interventions dans des conditions atmosphériques dangereuses comme la pluie, la neige, le brouillard, etc;
- Ne jamais laisser le circuit frigorifique ouvert car l'huile absorbe l'hu-midité et se dégrade
- Pendant le remplacement des cartes électroniques, toujours utiliser des équipements adéquats (extracteur, bracelet antistatique, etc.);
- En cas de remplacement d'un moteur, compresseur, évaporateur, batteries de condensation ou de tout autre élément lourd, veiller à ce que les organes de levage soient compatibles avec le poids à manutentionner;
- Sur les unités à air avec un compartiment compresseurs autonome, ne pas accéder au compartiment ventilateurs sans avoir isolé la machine à l'aide du sectionneur à bord du tableau et sans avoir placé un panneau reportant l'inscription « Ne pas actionner maintenance en cours »;
- Contacter l'entreprise s'il faut effectuer des modifications au schéma frigorifique, hydraulique ou électrique de l'unité ainsi que sur la logique de commande.

Préventions contre les risques chimiques/environnemen-taux et les incendies

ATTENTION Toute intervention sur la machine doit être effectuée avec l'IN-TERDICTION DE FUMER;

ATTENTION Ne jamais répandre dans la nature les fluides contenus dans le circuit frigorifique ;

ATTENTION Le circuit hydrique peut contenir des substances nocives. Éviter que le contenu n'entre en contact avec la peau, les yeux et les vêtements. Utiliser les équipements de protection individuelle requis;

S'il faut effectuer un soudobrasage et employer donc un chalumeau à flamme nue, la flamme ne doit être activée qu'en l'absence de gaz fréon dans l'environnement et sur la tuyauterie du circuit frigorifique. L'intérieur de la tuyauterie doit être "lavé" et doit contenir un gaz iner-te de type azote. La présence d'une flamme et de gaz fréon décomp-ose ce dernier en formant des composés mortels et cancérigènes.

Pour les travaux à chaud, il faut un extincteur à dioxyde de carbone (CO_2). NE PAS UTILISER D'EAU, les lixiviats pourraient être dangereux pour les évacuations ; en cas d'utilisation de l'eau, prévoir une cuve de récupération.

Prévention contre les risques résiduels dus à la pres-sion ou à une température élevée/basse

ATTENTION L'unité contient du gaz sous pression : aucune opération ne doit être effectuée sur les équipements sous pression sauf pendant les inter-ventions de maintenance effectuées par un personnel compétent et habilité.

ATTENTION N'effectuer les brasages ou les soudures que sur la tuyauterie vide et propre de tout résidu d'huile de lubrification ; ne pas approcher de flammes ou d'autres sources de chaleur de la tuyauterie contenant des fluides sous pression ;

ATTENTION Ne pas travailler avec des flammes nues à proximité de l'unité ;

ATTENTION Ne pas plier ou donner de coups dans les tuyaux contenant des fluides sous pression ;

ATTENTION L'unité est équipée de dispositifs de libération de la surpression (soupape de sûreté): en cas d'intervention de ces dispositifs, le gaz frigorifique est libéré à haute température et grande vitesse;

ATTENTION La machine et la tuyauterie possèdent des surfaces très chaudes et très froides qui impliquent le risque de brûlure;

ATTENTION Ne pas utiliser les mains pour contrôler toute fuite de réfrigérant .

ATTENTION Avant d'enlever des éléments le long des circuits hydroniques sous pression, intercepter le morceau de tuyau concerné et évacuer le fluide progressivement jusqu'à équilibrer la pression à celle atmo-sphérique.

Prévention contre les risques électriques résiduels

- Débrancher l'unité du réseau au moyen du sectionneur externe avant d'ouvrir le tableau électrique.
- En cas d'unité équipé de condenseurs de rephasage, attendre le temps indiqué sur la plaquette à bord de la machine à partir du moment où l'alimentation électrique de l'unité a été coupée, avant d'accéder à l'intérieur du tableau électrique;
- Si l'unité est équipée de composants de type inverter intégrés, débrancher l'alimentation électrique et attendre au moins 15 minutes avant d'y accéder pour l'entretien : les composants internes restent sous tension pendant cette période, ce qui crée un risque d'électrocution;
- Si le câble de l'alimentation est endommagé, il doit être remplacé par le constructeur ou par le service d'assistance technique ou de toute façon par une personne ayant une qualification similaire, afin de prévenir tout risque.

MAINTENANCE ORDINAIRE ET EXTRAORDINAIREL

Les activités de maintenance (avec le remplacement éventuel de composants) doivent être effectuées lorsque la machine est éteinte et non alimentée électriquement.

En particulier:

- Placer un panneau avec l'inscription « Ne pas actionner maintenan-ce en cours » sur le sectionneur ouvert :
- Se munir des équipements de protection individuelle opportuns ;
- Les opérations de remplacement des composants du circuit frigo-rifique doivent être exécutées après avoir vidé le gaz frigorifique contenu à l'intérieur du circuit;
- N'utiliser que des pièces de rechange d'origine achetées chez les revendeurs officiels;
- Il est interdit d'apporter des modifications au schéma frigorifique, hy-draulique ou électrique de l'unité ainsi qu'à sa logique de commande, sauf autorisation expresse de la société Aermec;
- La machine doit être chargée avec le réfrigérant prévu sur l'étiquette caractéristique et dans la quantité requise.

Les mesures de la pression et de la température d'entrée et de sortie des compresseurs pour la détermination de la surchauffe ou du sous-refroidissement de la machine doivent être effectuées de la facon suivante :

MICROCANAUX NETTOYAGE BATTERIE

Gardez les surfaces propres mircocanale batterie est essentielle pour maintenir les systèmes de réfrigération à des niveaux de performance optimaux.

Saleté, la graisse, l'huile et d'autres matières étrangères doivent être retirés périodiquement de la surface de la batterie selon les recommandations suivantes.

Éléments nécessaires:

- Équipement de protection individuelle
- L'eau chaude
- Le lavage à haute pression

Procédure:

Utilisez un nettoyeur haute pression avec un grand casting et assez de force pour enlever toute matière étrangère, procédez avec soin pour éviter les dommages et usure possible des ailettes.

Rincez abondamment avec de l'eau tout le matériel de nettoyage de la batterie et les équipements environnants, y compris le ventilateur et la menuiserie.

- Accéder au tableau de la machine lorsqu'elle est éteinte ;
- Les instruments nécessaires sont connectés, les manomètres sont connectés au moyen de rallonges appropriées aux prises de pression à l'entrée et à la sortie des compresseurs, les thermomètres sont connectés à des sondes à thermocouple qui sont fixées sur les tuyaux à l'entrée et à la sortie des compresseurs. Ne pas utiliser d'appareils de mesure qui obligent l'opérateur à s'approcher du circuit frigorifique de la machine;
- Allumer la machine et acquérir les mesures en restant éloignés et non exposés aux parties sous pression du circuit frigorifique;
- Dès que les mesures sont terminées, éteindre la machine, enlever les instruments et refermer le compartiment du circuit frigorifique.
- En cas de machines dont le compartiment du circuit frigorifique n'est pas fermé par des charpenteries, l'essai du pressostat de haute/basse pression doit être exécuté en se plaçant devant le tableau de la machine où se trouve le panneau de commande, en restant loin et sans s'exposer aux parties sous pression du circuit frigorifique.

Remplacement du compresseur

Inspection et contrôlel

Les activités d'inspection et de contrôle des fuites de la machine doivent être effectuées lorsque la machine est éteinte et non alimentée électriq-uement.

Nettoyage de la machine

Les activités de nettoyage de la machine doivent être effectuées lorsque la machine est éteinte et sans alimentation électrique.

MISE HORS SERVICE ET DÉMANTÈLEMENT DES COMPOSANTS DE LA MACHINE

ATTENTION Cette unité contient des gaz fluorés à effet de serre couverts par le Protocole de Kyoto. La loi interdit de les déverser dans la nature et oblige de les récupérer et de les remettre au revendeur ou à un centre de collecte.

Lorsque des composants sont enlevés pour être remplacés ou lorsque l'ensemble de l'unité arrive à la fin de sa vie et qu'il faut la retirer de l'installation, respecter les consignes d'élimination suivantes afin de minimiser l'impact environnemental :

- La totalité du gaz réfrigérant doit être récupérée dans des récipients spéciaux par un personnel spécialisé et muni des habilitations nécessaires et elle doit être remise aux centres de collecte;
- L?huile de lubrification contenue dans les compresseurs et dans le circuit frigorifique doit être récupérée et remise à des centres de collecte;
- La structure, l'équipement et les composants électriques et électroniques doivent être divisés en fonction du type de marchandises et de matériau de constitution et ils doivent être remis aux centres de collecte;
- Si le circuit hydrique contient des mélanges avec des substances antigel, le contenu doit être récupéré et remis à des centres de collecte;
- Respecter les lois nationales en vigueur.

19 LISTE DES INGRÉDIENTS PÉRIODIQUES CONSEILLÉS

INTERVENTIONS GÉNÉRALES

DESCRIPTION			FRÉQUENCE				
	Notes	3 mois	6 mois	12 mois			
INTERVENTIONS GÉNÉRALES							
Contrôle de toute fuite de réfrigérant (opération à effectuer selon la fréquence conseillée par les règlements européens en vigueur)		•					
Contrôle de la tension d'alimentation de l'unité		•					
Contrôle de la tension d'alimentation des compresseurs		•					
Contrôle de la tension d'alimentation des ventilateurs		•					
Contrôle des vannes solénoïdes		•					
Contrôle du fonctionnement et étalonnage des pressostats le cas échéant		•					
Contrôle et lecture des sondes de pression/température		•					
Contrôle et remplacement éventuel des filtres déshydrateurs				•			
Contrôle des contacteurs des compresseurs		•					
Contrôle des contacteurs des ventilateurs le cas échéant				•			
Nettoyage des batteries d'échange (de préférence de l'intérieur vers l'extérieur)	(1)	•					
Contrôle des résistances électriques des échangeurs							
Contrôler la présence éventuelle de rouille et de signes de corrosion sur les composants en accordant une attention particulière aux récipients sous pression. Dans ce cas, intervenir en les							
remplaçant ou en intervenant avec des produits spécifiques			•	•			
Nettoyage général de l'unité				•			
Purger le circuit hydraulique et les échangeurs de chaleur ; la présence simultanée d'air et d'eau réduit l'efficience et peut favoriser la formation de la rouille			•				

(1) Pour le nettoyage des batteries, se reporter au chapitre correspondant.

INTERVENTIONS SUR LES CIRCUITS

DESCRIPTION		FRÉQUENCE		
	Notes	3 mois	6 mois	12 mois
INTERVENTIONS AU CIRCUIT FRIGORIFIQUE FONCTIONNEMENT À PLEINE	CHARGE			
Mesure de la température de surchauffe			•	
Mesure de la température de sous-refroidissement			•	
Mesure de la température du gaz d'évacuation			•	
Mesure des courants absorbés des ventilateurs			•	
Mesure des courants absorbés des compresseurs			•	
CONTRÔLE DES COMPRESSEURS				
Contrôle du niveau de l'huile		•		
Contrôle de l'acidité de l'huile				•
Contrôle du bon fonctionnement de la résistance carter			•	
Contrôle du capteur de niveau de l'huile le cas échéant			•	
CONTRÔLES SUR LE CIRCUIT HYDRAULIQUE				
Mesure du courant absorbé des pompes			•	
Contrôle du joint du rotor de la ou des pompes		•		
Contrôle des joints flexibles		•		
Contrôle de l'étanchéité des têtes des échangeurs tubulaires			•	
Contrôle du bon fonctionnement et étalonnage du fluxostat le cas échéant		•		
Contrôle du bon fonctionnement du pressostat différentiel le cas échéant		•		
Contrôle de la concentration de la solution glycol le cas échéant	(1)	•		
Nettoyage du filtre à eau		•		

(1) Pour le remplacement éventuel du glycol, se référer aux documents fournis par le producteur.

ATTENTION La fréquence des opérations décrites ici peut varier en fonction de l'utilisation de l'unité et du type d'installation où elle est installée. Toutefois, nous recom-

